Recall:

• **Definition:** We define an *improper integral* of the form $\int_a^{\infty} f(x) dx$ as follows:

$$\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx.$$

The integral on the right is a proper definite integral over a finite interval, and so the Fundamental Theorem of Calculus applies.

• **Definition:** We say an improper integral $\int_{a}^{\infty} f(x) dx$ converges if

$$\lim_{b \to \infty} \int_{a}^{b} f(x) \, dx$$

exists and converges to a finite number. Otherwise, we say that the improper integral *diverges*.

•
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$
 converges if $p > 1$, diverges if $p \le 1$.

The same results are true for $\int_{a}^{\infty} \frac{1}{x^{p}} dx$ for any a > 0.

October 19, 2007

Sklensky

Leftover from Thursday:

- 2. Think about the results you saw yesterday, and the big picture of what's going on.
 - (a) Is it *necessary* that f(x) converge to 0 as $x \to \infty$ in order for $\int_{a}^{\infty} f(x) dx$ to converge to a finite number?
 - (b) If f(x) does converge to 0 as $x \to \infty$, must $\int_{a}^{b} f(x) dx$ automatically converge to a finite number? That is, is $f(x) \to 0$ a sufficient condition for $\int_{a}^{\infty} f(x) dx$ to converge to a finite number?

October 19, 2007

Sklensky

Determine whether the integral converges or diverges.

1.
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$

2.
$$\int_0^1 \frac{1}{x} dx$$

3.
$$\int_0^1 \frac{1}{x^3} dx$$

4.
$$\int_0^1 \frac{1}{x^p} dx$$

October 19, 2007

 $\mathbf{Sklensky}$

Determine whether the integral converges or diverges.

1.
$$\int_{0}^{\infty} xe^{-x} dx$$

2.
$$\int_{-\infty}^{\infty} xe^{-x^{2}} dx$$

3.
$$\int_{-2}^{2} \frac{1}{x^{2}} dx$$

4.
$$\int_{1}^{\infty} \frac{1}{x^{2}+5} dx$$

October 19, 2007

Sklensky