Determining Convergence

Key Step: Identify where in the interval the integral is improper, and convert to a limit as we approach that number.

Examples:

1. $\int_{3}^{\infty} \frac{1}{(x-1)^{4}} d x=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{1}{(x-1)^{4}} d x$
2. $\int_{2}^{100} \frac{x}{\sqrt{x^{2}-4}} d x=\lim _{a \rightarrow 2} \int_{a}^{100} \frac{x}{\sqrt{x^{2}-4}} d x$

Determining Convergence - Important Reminders

Consider $I=\int_{a}^{\infty} f(x) d x$.

1. There is a huge distinction between $f(x)$ converging that is, $\lim _{x \rightarrow \infty} f(x)$ being finite - and I converging. Just because you can find $\lim _{x \rightarrow \infty} f(x)$, and it's a finite number, does not mean that $\int_{a}^{\infty} f(x) d x$ will be finite.
2. In fact, if $\lim _{x \rightarrow \infty} f(x)$ exists but is not $0, I$ diverges! No need to investigate any further.
3. If $\lim _{x \rightarrow \infty} f(x)=0, I$ may converge or it may diverge you must investigate further.

Determining Convergence

Question: How do we determine whether or not an improper integral converges if we can't find the antiderivative?

And if it does converge, how would we approximate the value of the improper integral?

Determine whether each of the following improper integrals converges or diverges.

1. $\int_{2}^{\infty} \frac{1}{x^{3}+2} d x$
2. $\int_{5}^{\infty} \frac{1}{\sqrt{x}-2} d x$
3. $\int_{2}^{\infty} \frac{2}{\sqrt{x}+x^{2}} d x$
4. $\int_{0}^{\infty} \frac{2}{\sqrt{x}+x^{2}} d x$

Goals:

1. Is there any way to at least determine whether or not an improper integral I converges even if we cannot find an antiderivative?
2. Better yet, if we do determine that an improper integral I converges, is there a way to approximate the value of the integral I ?
