Let $I=\int_{0}^{1} x \sin \left(x^{2}\right) d x$

1. Use the leftbox and rightbox commands in Maple to look at L_{10} and R_{10}.
```
with(student):
f:= x -> x*sin(x^2);
leftbox(f(x), x=0..1, 10);
rightbox(f(x),x=0..1, ,10);
```

2. Write L_{10} and L_{50} using sigma notation (without using Maple to help you with the sum).
3. Write R_{10} and R_{50} using Sigma notation (again, without using Maple).
4. Without calculating any of them, rank I, L_{10} and R_{10} in increasing order.
5. Can you draw any conclusions about how well L_{10} approximates I (without calculating I)?
6. Use the formal definition of the integral to write $I=\int_{0}^{1} x \sin \left(x^{2}\right) d x$ as a limit.
