Find the interval of convergence for the following power series:

1. $\sum_{j=0}^{\infty} \frac{x^{j}}{j!}$
2. $\sum_{n=0}^{\infty}(n+1)(x-3)^{n}$

Recall:

Theorem: The nth Taylor polynomial for $f(x)$ based at $x=x_{0}$ is given by $P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+a_{3}\left(x-x_{0}\right)^{3} \cdots+a_{n}\left(x-x_{0}\right)^{n}$, where $a_{i}=\frac{f^{(i)}\left(x_{0}\right)}{i!}$

Let $f(x)=\sin (x)$.

1. Find $P_{6}(x)$ for $f(x)$ based at $x_{0}=\frac{\pi}{2}$.

$$
\begin{array}{lll}
f(x)=\sin (x) & f(\pi / 2)=1 & a_{0}=1 / 0!=1 \\
f^{\prime}(x)=\cos (x) & f^{\prime}(\pi / 2)=0 & a_{1}=0 \\
f^{\prime \prime}(x)=-\sin (x) & f^{\prime \prime}(\pi / 2)=-1 & a_{2}=-1 / 2! \\
f^{\prime \prime \prime}(x)=-\cos (x) & f^{\prime \prime \prime}(\pi / 2)=0 & a_{3}=0 / 3!=0 \\
f^{(4)}(x)=\sin (x) & f^{(4)}(\pi / 2)=1 & a_{4}=1 / 4! \\
f^{(5)}(x)=\cos (x) & f^{(5)}(\pi / 2)=0 & a_{5}=0 \\
f^{(6)}(x)=-\sin (x) & f^{(6)}(\pi / 2)=-1 & a_{6}=-1 / 6! \\
& P_{6}(x)=1-\frac{(x-\pi / 2)^{2}}{2!}+\frac{(x-\pi / 2)^{4}}{4!}-\frac{(x-\pi / 2)^{6}}{6!}
\end{array}
$$

Find Taylor Series about $x_{0}=0$ for the following:

1. $f(x)=\sin (x)$
2. $g(x)=\cos (x)$

Hint: $\frac{d}{d x} \sin (x)=\cos (x)$

