Find the interval of convergence for the following power series:

1. $\sum_{j=0}^{\infty} \frac{x^{j}}{j!}$

- Using the ratio test, find the int. of conv., give or take endpoints:

$$
\begin{aligned}
\lim _{j \rightarrow \infty}\left|\frac{a_{j+1}}{a_{j}}\right| & =\lim _{j \rightarrow \infty} \frac{|x|^{j+1} j!}{|x|^{j}(j+1)!} \\
& =\lim _{j \rightarrow \infty} \frac{|x|}{j+1} \\
& =0
\end{aligned}
$$

Since $\lim _{j \rightarrow \infty}\left|\frac{a_{j+1}}{a_{j}}\right|=0<1$ independent of $\mathbf{x}, \sum_{j=0}^{\infty} \frac{x^{j}}{j!}$ always converges absolutely, no matter what value of x you may choose to use.

Conclusion: The interval of convergence for $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ is $(-\infty, \infty)$.
2. $\sum_{n=0}^{\infty}(n+1)(x-3)^{n}$

- Using the ratio test, find the int. of conv., give or take endpoints:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{(n+2)|x-3|^{n+1}}{(n+1)|x-3|^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{(n+2)|x-3|}{n+1} \\
& =|x-3| \lim _{n \rightarrow \infty} \frac{n+2}{n+1} \\
& =|x-3|
\end{aligned}
$$

$\Rightarrow \sum_{n=0}^{\infty}(n+1)(x-3)^{n}$ converges absolutely if $|x-3|<1$, diverges if
$|x-3|>1$, i.e. converges absolutely when $-1<x-3<1$, or $2<x<4$, and diverges when $x<2$ or $x>4$.
2. (continued) $\sum_{n=0}^{\infty}(n+1)(x-3)^{n}$ converges absolutely when $2<x<4$, and diverges when $x<2$ or $x>4$.
But what happens at $x=2$ and $x=4$?
The ratio test is inconclusive, so check these cases individually.

- When $x=4$, the series we're dealing with is

$$
\sum_{n=0}^{\infty}(n+1)(1)^{n}=\sum_{n=0}^{\infty}(n+1) .
$$

This series obviously diverges.

- When $x=2$, the series we're dealing with is $\sum_{n=0}^{\infty}(-1)^{n}(n+1)$.

Using the alternating series test, this series obviously diverges also.
Therefore, the interval of convergence is $(2,4)$.

Find Taylor Series about $x_{0}=0$ for the following:

1. $f(x)=\sin (x)$

k	$f^{(k)}(x)$	$f(k)\left(x_{0}\right)$	a_{k}
0	$\sin (x)$	0	$a_{0}=0 / 0!=0$
1	$\cos (x)$	1	$a_{1}=1 / 1!=1$
2	$-\sin (x)$	0	$a_{2}=0 / 2!=0$
3	$-\cos (x)$	-1	$a_{3}=-1 / 3!$
4	$\sin (x)$	0	$a_{4}=0$
5	$\cos (x)$	1	$a_{5}=1 / 5!$
\vdots	\vdots	\vdots	\vdots

\Rightarrow Taylor series for $\sin (x)$ based at $x_{0}=0$ is

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

1. (continued)

Write this Taylor series for $\sin (x)$ in sigma notation:

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

- Only odd powers of $x \Rightarrow$ write as $x^{2 k+1}$ or $x^{2 k-1}$. I choose $x^{2 k+1}$.
- Divide by that same number, factorial $\Rightarrow \frac{x^{2 k+1}}{(2 k+1)!}$
- What k do we need to start with? $\frac{x^{2 k+1}}{(2 k+1)!}=x$ when $k=0$.
- Alternating sum $\Rightarrow(-1)^{k}$ or $(-1)^{k+1}$.

Starting with $k=0$,first term $=x($ not $-x) \Rightarrow(-1)^{k}$.
Therefore, the power series for $\sin (x)$ is $\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}$.

Find Taylor Series about $x_{0}=0$ for the following:
2. $f(x)=\cos (x)$
$\cos (x)=\frac{d}{d x}(\sin (x)) \Rightarrow$ differentiate the power series for $\sin (x)$.
Power series for $\sin (x)$ based at $x_{0}=0$:

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
$$

\Rightarrow Power series for $\cos (x)$ based at $x_{0}=0$:

$$
\begin{aligned}
\frac{d}{d x}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right) & \text { or } \\
1-\frac{d}{d x}\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}+\frac{5 x^{4}}{5!}-\frac{7 x^{6}}{7!}+\cdots\right. & \text { or } \quad \sum_{k=0}^{\infty}(-1)^{k} \frac{(2 k+1) x^{2 k}}{(2 k+1)!} \\
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots & \text { or } \quad \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}
\end{aligned}
$$

