$1.1 \int \arctan (x) d x$
Let

$$
\begin{array}{rl}
u=\arctan (x) & d v=d x \\
d u=\frac{1}{1+x^{2}} d x & v=x
\end{array}
$$

Thus

$$
\int \arctan (x) d x=x \arctan (x)-\int \frac{x}{1+x^{2}} d x
$$

With a substitution, find that

$$
\int \arctan (x) d x=x \arctan (x)-\frac{1}{2} \ln \left(1+x^{2}\right)+C
$$

Verify:

$$
\frac{d}{d x}\left(x \arctan (x)-\frac{1}{2} \ln \left(1+x^{2}\right)+C\right)=\frac{x}{1+x^{2}}+\arctan (x)-\frac{1}{2} \frac{2 x}{1+x^{2}}(2 x) .
$$

$1.2 \int e^{x} \cos (x) d x$

$$
\begin{array}{ll}
u=e^{x} & d v=\cos (x) d x \\
d u=e^{x} d x & v=\sin (x)
\end{array}
$$

$$
\int e^{x} \cos (x) d x=e^{x} \sin (x)-\int e^{x} \sin (x) d x
$$

$$
u=e^{x} \quad d v=\sin (x) d x
$$

$$
d u=e^{x} d x \quad v=-\cos (x)
$$

$$
\begin{aligned}
\int e^{x} \cos (x) d x & =e^{x} \sin (x)-\left(e^{x} \cdot(-\cos (x))+\int \cos (x) e^{x} d x\right) \\
& =e^{x} \sin (x)+e^{x} \cos (x)-\int e^{x} \cos (x) d x
\end{aligned}
$$

$$
2 \int e^{x} \cos (x) d x=e^{x} \sin (x)+e^{x} \cos (x)
$$

$$
\int e^{x} \cos (x) d x=\frac{e^{x}}{2}(\sin (x)+\cos (x))+C
$$

$1.3 \int(\ln (x))^{2} d x$
Method 1:

$$
\begin{array}{ll}
u=(\ln (x))^{2} & d v=d x \\
d u=2 \ln (x) / x & v=x
\end{array}
$$

$$
\int(\ln (x))^{2} d x=x(\ln (x))^{2}-\int 2 \ln (x) d x
$$

Use integration by parts again.
Method 2:

$$
\begin{array}{ll}
u=\ln (x) & d v=\ln (x) d x \\
d u=\frac{1}{x} d x & v=\int \ln (x) d x
\end{array}
$$

Use integration by parts
Either way, end up with

$$
\int(\ln (x))^{2} d x=x(\ln (x))^{2}-2 x \ln (x)+2 x+C
$$

$1.4 \int_{\text {If try: }} x^{3} e^{x^{2}} d x$

$$
\begin{array}{rl}
u=x^{3} & d v=e^{x^{2}} d x \\
d u=3 x^{2} & v=? ? ? ?
\end{array}
$$

If try:

$$
\begin{array}{rl}
u=e^{x^{2}} & d v=x^{3} d x \\
d u=2 x e^{x^{2}} d x & v=\frac{x^{4}}{4}
\end{array}
$$

$$
\int x^{3} e^{x^{2}} d x=\frac{1}{4} x^{4} e^{x^{2}}-\frac{1}{2} \int x^{4} e^{x^{2}} d x
$$

Just made life harder.
1.4 (continued): $\int x^{3} e^{x^{2}} d x$

Try

$$
\begin{array}{ll}
u=x^{2} & d v=x e^{x^{2}} d x \\
d u=2 x d x & v=\int x e^{x^{2}} d x \\
& \text { Let } w=x^{2}, \text { so } d w=2 x d x \\
& v=\frac{1}{2} e^{x^{2}}
\end{array}
$$

Hence

$$
\begin{aligned}
\int x^{3} e^{x^{2}} d x & =\frac{x^{2}}{2} e^{x^{2}}-\frac{1}{2} \int e^{x^{2}} \cdot 2 x d x \\
& =\frac{x^{2}}{2} e^{x^{2}}-\int x e^{x^{2}} d x \\
& =\frac{x^{2}}{2} e^{x^{2}}-\frac{1}{2} e^{x^{2}}+C
\end{aligned}
$$

Verify:

$$
\frac{d}{d x}\left(\frac{x^{2}}{2} e^{x^{2}}-\frac{1}{2} e^{x^{2}}+C\right)=\left(\frac{x^{2}}{2} * 2 x * e^{x^{2}}+e^{x^{2}} * x\right)-x e^{x^{2}}=x^{3} e^{x^{2}}
$$

1. $5 \int x^{2} \arcsin (x) d x$

Let

$$
\begin{array}{ll}
u=\arcsin (x) & d v=x^{2} d x \\
d u=\frac{1}{\sqrt{1-x^{2}}} d x & v=\frac{1}{3} x^{3}
\end{array}
$$

$$
\int x^{2} \arcsin (x)=\frac{1}{3} x^{3} \arcsin (x)-\frac{1}{3} \int x^{3} \frac{1}{\sqrt{1-x^{2}}} d x
$$

Let

$$
\begin{array}{ll}
u=x^{2} & d v=\frac{x}{\sqrt{1-x^{2}}} d x \\
d u=2 x d x \quad & v=\int x\left(1-x^{2}\right)^{-1 / 2} d x \\
& \text { Let } w=1-x^{2}, \text { so } d w=-2 x d x \\
v=-\frac{1}{2} \int w^{-1 / 2} d w=-\frac{1}{2} \cdot \frac{2}{1} w^{1 / 2}=-\left(1-x^{2}\right)^{1 / 2} \\
\int x^{2} \arcsin (x) d x= & \frac{1}{3} x^{3} \arcsin (x)-\frac{1}{3}\left[-x^{2} \sqrt{1-x^{2}}\right. \\
& +2 \int x \sqrt{1-x^{2}} d x
\end{array}
$$

$1.6 \int_{\text {Let }} \sin (\ln (x)) d x$

$$
\begin{aligned}
& \begin{array}{ll}
u=\sin (\ln (x)) & d v=d x \\
d u=\cos (\ln (x)) \cdot \frac{1}{x} d x & v=x
\end{array} \\
& \qquad \int \sin (\ln (x)) d x=x \sin (\ln (x))-\int(\cos (\ln (x)) d x
\end{aligned}
$$

Let

$$
\begin{array}{ll}
u=\cos (\ln (x)) d x & d v=d x \\
d u=-\sin (\ln (x)) \cdot \frac{1}{x} d x & v=x
\end{array}
$$

$$
\int \sin (\ln (x)) d x=x \sin (\ln (x))-\left[x \cos (\ln (x))+\int \sin (\ln (x)) d x\right]
$$

$$
\begin{aligned}
2 \int \sin (\ln (x)) d x & =x \sin (\ln (x))-x \cos (\ln (x)) \\
\int \sin (\ln (x)) d x & =\frac{1}{2}(x \sin (\ln (x))-x \cos (\ln (x)))+C
\end{aligned}
$$

$2.1 \int_{1}^{e^{3}} \frac{\ln (x)}{x} d x$
Substitution: If we write this as a product, $\ln (x) \cdot \frac{1}{x}$, we can see that the two pieces are related.
Let $u=\ln (x)$, so $d u=\frac{1}{x} d x$.
$2.2 \int_{1}^{e^{3}} \frac{\ln (x)}{x^{2}} d x$
Parts: Written as a product, $\ln (x) \cdot \frac{1}{x^{2}}$, the two pieces are unrelated. Let $u=\ln (x)$ and $d v=\frac{1}{x^{2}} d x$. Then $d u=\frac{1}{x}$ and $v=-\frac{1}{x}$.
$2.3 \int x^{3} \cos \left(x^{4}\right) d x$
Substitution: We have a composition, $\cos \left(x^{4}\right)$. Furthermore, we more or less have the derivative of the inside function.
Let $u=x^{4}$, so $d u=4 x^{3} d x$.
$2.4 \int x^{3} \cos \left(x^{2}\right) d x$
Parts and substitution: Product of unrelated pieces, so integration by parts. However, we also have a non-trivial composition, so substitution will have to come in as well: In order to antidifferentiate $\cos \left(x^{2}\right)$, we'll need an attached factor of $x$.
Let $u=x^{2}$ and $d v=x \cos \left(x^{2}\right) d x$.
$2.5 \int \cos \left(x^{1 / 3}\right) d x$
Parts and substitution: We have composition, so begin with $u=x^{1 / 3}$, so $d u=\frac{1}{3} x^{-2 / 3} d x \Rightarrow 3 x^{2 / 3} d u=d x \Rightarrow 3 u^{2} d u=d x$.
Make the substitution, use integration by parts.
$2.6 \int \sec (x) d x$.
Substitution: Do the suggested multiplication, then let $u=\sec (x)+\tan (x)$.

