Example: Let $I = \int_0^{\pi/4} e^{\cos(x)} dx$. This can not be integrated exactly.

Example: Let $I = \int_0^{\pi/4} e^{\cos(x)} dx$.

This can not be integrated exactly.

- Using Maple, I can find that
 - $L_{1000} = 1.940005805$
 - $R_{1000} = 1.939463750$
 - $M_{1000} = 1.939734888$
 - And since $T_{1000} = \frac{R_{1000} + L_{1000}}{2}$, $T_{1000} = 1.939734778$

But which of these is the best? How close is each to the actual value of 1?

2 / 6

Example: Let $I = \int_0^{\pi/4} e^{\cos(x)} dx$.

How close is $L_{1000} = 1.940005805$ to the actual value of I? No idea!

Example: Let $I = \int_0^{\pi/4} e^{\cos(x)} dx$.

How close is $L_{1000} = 1.940005805$ to the actual value of I? No idea!

▶ But:

f decreasing on
$$[0, \pi/4]$$

 $\Rightarrow |I - L_{1000}| \le |R_{1000} - L_{1000}|.$

- ► **Example:** Let $I = \int_0^{\pi/4} e^{\cos(x)} dx$. How close is $L_{1000} = 1.940005805$ to the actual value of I? No idea!
- ► But:

f decreasing on
$$[0, \pi/4]$$

 $\Rightarrow |I - L_{1000}| \le |R_{1000} - L_{1000}|.$

ightharpoonup Since $R_{1000} = 1.939463750$

$$\Rightarrow$$
 error = $|I - L_{1000}| \le 0.000542055$.

3 / 6

▶ Example (continued) $I = \int_0^{\pi/4} e^{\cos(x)} dx$. Also have no idea how close $M_{1000} = 1.939734888$ is to I.

Example (continued) $I = \int_0^{\pi/4} e^{\cos(x)} dx$.

Also have no idea how close $M_{1000} = 1.939734888$ is to *I*.

f concave down on
$$[0, \pi/4]$$

 $\Rightarrow |I - M_{1000}| \le |T_{1000} - M_{1000}|.$

Example (continued) $I = \int_0^{\pi/4} e^{\cos(x)} dx$.

Also have no idea how close $M_{1000} = 1.939734888$ is to I.

f concave down on
$$[0, \pi/4]$$

 $\Rightarrow |I - M_{1000}| \le |T_{1000} - M_{1000}|.$

ightharpoonup Since $T_{1000} = 1.939734778$,

error =
$$|I - M_{1000}| \le 0.000000011$$
.

Definition:

Let [a, b] be partitioned into n equal subintervals by n + 1 points

$$a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$$

and let Δx be the width of the each subinterval. In the ith subinterval, pick a point c_i . A **Riemann sum** for f and this partition is

$$f(c_1)\Delta x + f(c_2)\Delta x + \cdots + f(c_n)\Delta x = \sum_{i=1}^n f(c_i)\Delta x$$

Formal Definition of the Integral:

$$\int_{a}^{b} f(x) dx \stackrel{\text{def}}{=} \lim_{n \to \infty} \sum_{i=1}^{n} f(c_{i}) \Delta x_{i}$$

Let
$$I = \int_0^1 x \sin(x^2) dx$$

- 1. Use the RiemannSum command in Maple to look at L_{10} and R_{10} .
 - ▶ Load the student package: Tools-Load Package-Student Calculus 1.
 - ► Type in:

```
f:= x -> x*sin(x^2);
RiemannSum(f(x), x=0..1, partition=10,method=left,
   output=plot);
RiemannSum(f(x),x=0..1, partition=10, method=right,
   output=plot);
```

- 2. Write L_{10} and L_{50} using sigma notation (without using Maple).
- 3. Write R_{10} and R_{50} using Sigma notation (again, without Maple).
- 4. Use the formal definition of the integral to write $I = \int_0^1 x \sin(x^2) dx$ as a limit.

6 / 6