- Example: Let $I=\int_{0}^{\pi / 4} e^{\cos (x)} d x$. This can not be integrated exactly.
- Example: Let $I=\int_{0}^{\pi / 4} e^{\cos (x)} d x$.

This can not be integrated exactly.

- Using Maple, I can find that
- $L_{1000}=1.940005805$
- $R_{1000}=1.939463750$
- $M_{1000}=1.939734888$
- And since $T_{1000}=\frac{R_{1000}+L_{1000}}{2}, T_{1000}=1.939734778$

But which of these is the best? How close is each to the actual value of I ?

If f is increasing:

L_{n} underestimates

R_{n} overestimates

If f is decreasing:

L_{n} overestimates R_{n} underestimates

- Example: Let $I=\int_{0}^{\pi / 4} e^{\cos (x)} d x$. How close is $L_{1000}=1.940005805$ to the actual value of I ? No idea!
- Example: Let $I=\int_{0}^{\pi / 4} e^{\cos (x)} d x$. How close is $L_{1000}=1.940005805$ to the actual value of I ? No idea!
- But:

$$
\begin{aligned}
& f \text { decreasing on }[0, \pi / 4] \\
& \Rightarrow\left|I-L_{1000}\right| \leq\left|R_{1000}-L_{1000}\right| .
\end{aligned}
$$

- Example: Let $I=\int_{0}^{\pi / 4} e^{\cos (x)} d x$. How close is $L_{1000}=1.940005805$ to the actual value of I ? No idea!
- But:

$$
\begin{aligned}
& f \text { decreasing on }[0, \pi / 4] \\
& \Rightarrow\left|I-L_{1000}\right| \leq\left|R_{1000}-L_{1000}\right| .
\end{aligned}
$$

- Since $R_{1000}=1.939463750$

$$
\Rightarrow \quad \text { error }=\left|I-L_{1000}\right| \leq 0.000542055 .
$$

- Example (continued) $I=\int_{0}^{\pi / 4} e^{\cos (x)} d x$. Also have no idea how close $M_{1000}=1.939734888$ is to I.
- Example (continued) $I=\int_{0}^{\pi / 4} e^{\cos (x)} d x$.

Also have no idea how close $M_{1000}=1.939734888$ is to I.

f concave down on $[0, \pi / 4]$
$\Rightarrow\left|I-M_{1000}\right| \leq\left|T_{1000}-M_{1000}\right|$.

- Example (continued) $I=\int_{0}^{\pi / 4} e^{\cos (x)} d x$.

Also have no idea how close $M_{1000}=1.939734888$ is to I.

f concave down on $[0, \pi / 4]$
$\Rightarrow\left|I-M_{1000}\right| \leq\left|T_{1000}-M_{1000}\right|$.

- Since $T_{1000}=1.939734778$,

$$
\text { error }=\left|I-M_{1000}\right| \leq 0.000000011 .
$$

Definition:

Let $[a, b]$ be partitioned into n equal subintervals by $n+1$ points

$$
a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b
$$

and let Δx be the width of the each subinterval. In the i th subinterval, pick a point c_{i}. A Riemann sum for f and this partition is

$$
f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\cdots+f\left(c_{n}\right) \Delta x=\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

Formal Definition of the Integral:

$$
\int_{a}^{b} f(x) d x \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

Let $I=\int_{0}^{1} x \sin \left(x^{2}\right) d x$

1. Use the RiemannSum command in Maple to look at L_{10} and R_{10}.

- Load the student package: Tools-Load Package-Student Calculus 1.
- Type in:

```
f:= x -> x*sin(x^2);
RiemannSum(f(x), x=0..1, partition=10,method=left,
    output=plot);
RiemannSum(f(x),x=0..1, partition=10, method=right,
    output=plot);
```

2. Write L_{10} and L_{50} using sigma notation (without using Maple).
3. Write R_{10} and R_{50} using Sigma notation (again, without Maple).
4. Use the formal definition of the integral to write $I=\int_{0}^{1} x \sin \left(x^{2}\right) d x$ as a limit.
