1. In the following exercises, evaluate the integral assuming that f is the function shown below. [Note: The graph of f consists of two straight lines and two one-quarter circles.]

(b)
$$\int_{9}^{12} f(x) \, dx$$

- 2. Evaluate $\int_{-2}^{1} w \, dw$ by
 - (a) using a graph of the integrand over the interval of integration
 - (b) using antiderivatives and the Fundamental Theorem of Calculus
- 3. Four students disagree on the value of the integral $\int_0^{\pi/2} \cos^8(x) dx$. Jack argues for $\pi \approx 3.14$, Joan for $35\pi/256 \approx 0.43$, Ed for $2\pi/9 1 \approx -0.30$, and Lesley for $\pi/4 \approx 0.79$. Use the sketch of the graph of $\cos^8(x)$ shown below to determine who is right. (One of them *is* right!) Explain how you know that the other values are incorrect.

4. Let $A_f(x) = \int_0^x f(t) dt$, where f is the function graphed below. Use the definition of the integral as *signed* area to answer the following questions:

- (a) Explain why $A_f(-1) < 0$.
- (b) Which is larger: $A_f(-2)$ or $A_f(-1)$? Justify your answer.
- 5. Let $G(x) = \int_{5}^{x} f(t) dt$, where f(t) > 1 for all $t \ge 0$. Is it possible that G(10) = 3? Justify your answer using the definition of the integral as signed area.
- 6. $F(x) = \int_0^x f(t) dt$, where f is the function whose graph is shown below. Use either the definition of the integral as signed area or the FTC to answer the following questions:

- (a) Is F decreasing at x = 1? Justify.
- (b) Is F concave up at x = 1? Justify.
- (c) Suppose that g is a function such that g(0) = 2 and g'(x) = f(x) for all x. How are the graphs of F and g related?