1. In the following exercises, evaluate the integral assuming that f is the function shown below. [Note: The graph of f consists of two straight lines and two one-quarter circles.]

(a) $\int_{0}^{15} f(x) d x$
(b) $\int_{9}^{12} f(x) d x$
2. Evaluate $\int_{-2}^{1} w d w$ by
(a) using a graph of the integrand over the interval of integration
(b) using antiderivatives and the Fundamental Theorem of Calculus
3. Four students disagree on the value of the integral $\int_{0}^{\pi / 2} \cos ^{8}(x) d x$. Jack argues for $\pi \approx 3.14$, Joan for $35 \pi / 256 \approx 0.43$, Ed for $2 \pi / 9-1 \approx-0.30$, and Lesley for $\pi / 4 \approx 0.79$. Use the sketch of the graph of $\cos ^{8}(x)$ shown below to determine who is right. (One of them is right!) Explain how you know that the other values are incorrect.

4. Let $A_{f}(x)=\int_{0}^{x} f(t) d t$, where f is the function graphed below. Use the definition of the integral as signed area to answer the following questions:

(a) Explain why $A_{f}(-1)<0$.
(b) Which is larger: $A_{f}(-2)$ or $A_{f}(-1)$? Justify your answer.
5. Let $G(x)=\int_{5}^{x} f(t) d t$, where $f(t)>1$ for all $t \geq 0$. Is it possible that $G(10)=3$? Justify your answer using the definition of the integral as signed area.
6. $F(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown below. Use either the definition of the integral as signed area or the FTC to answer the following questions:

(a) Is F decreasing at $x=1$? Justify.
(b) Is F concave up at $x=1$? Justify.
(c) Suppose that g is a function such that $g(0)=2$ and $g^{\prime}(x)=f(x)$ for all x. How are the graphs of F and g related?
