Horrible Pizza-Cutting:

Area of odd slices $=$ Area of even slices

Calculus of Polar Functions: Derivatives

- If $y=f(x)$, then $f^{\prime}(a)$ gives the instantaneous rate of change at $x=a$, and also the slope of the line tangent to $y=f(x)$ at $x=a$.

- If $r=f(\theta)$, then $f^{\prime}(\alpha)$ still gives the instantaneous rate of change at $\theta=\alpha$, but it does not give the slope of the tangent line.

Calculus of Polar Functions: Derivatives

If $r=f(\theta), \frac{d r}{d \theta}$ doesn't measure the slope of the line tangent to the graph:

- $\frac{d y}{d x}$ is a limit of slopes of secant lines, $\frac{\Delta y}{\Delta x}$.
- $\frac{\Delta r}{\Delta \theta}$ isn't the slope of a line

To find the slope of the tangent line, combine the conversion formulas $x=r \cos (\theta)$ and $y=r \sin (\theta)$ with the function $r=f(\theta)$, so that
$x=f(\theta) \cos (\theta)$ and $y=f(\theta) \sin (\theta)$. Then use that $\left.\frac{d y}{d x}\right|_{\theta=\alpha}=\frac{\frac{d y}{d \theta}(\alpha)}{\frac{d x}{d \theta}(\alpha)}$.

Calculus of Polar Functions: Area

While we can calculate $\int_{\alpha}^{\beta} f(\theta) d \theta$, it no longer represents area:

- $\int_{a}^{b} f(x) d x$ is the limit of sums of areas of rectangles that lie more or less within our region, each of area $f(x) \Delta x$.
- $f(\theta) \Delta \theta$ doesn't measure the area of a rectangle that lies within our region.
- Our regions can have both top and bottom as the same curve. Even if we were going to do area, it wouldn't be area down to the x-axis
- It would be radial area.
- It turns out that radial area enclosed by $r=f(\theta)$ is given by

$$
\text { Area }=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta=\int_{\alpha}^{\beta} \frac{1}{2}[f(\theta)]^{2} d \theta
$$

Calculus of Polar Functions: Arclength

The formula for arc length is also different when working with polar functions.

- In rectangular coordinates, recall that the arc length of $y=f(x)$ from $x=a$ to $x=b$ is

$$
\text { Arclength }=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

- For a polar function, the arc length of $r=f(\theta)$ from $\theta=\alpha$ to $\theta=\beta$ iis given by

$$
\text { Arclength }=\int_{\alpha}^{\beta} \sqrt{\left.[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]\right]^{2}} d \theta
$$

Calculus of Polar Functions: Signed Volume

Suppose $z=f(r, \theta)$ describes a surface.
Signed Volume is still given by $\iint_{R} f(r, \theta) d A$.

- In rectangular coordinates, partition R into rectangles of area
$\Delta A=\Delta x \Delta y$. Fubini's theorem let's us break into iterated integrals $d x d y$ isn't totally surprising.
- Don't use rectangles to partition a polar region: use little bits of the polar grid. Those don't have area $\Delta A=\Delta r \Delta \theta$.

Can use geometry to show: $\Delta A=r \Delta r \Delta \theta$.

- Fubini's Theorem for polar functions:

Suppose that $f(r, \theta)$ is continuous on the region R : $\alpha \leq \theta \leq \beta$ and $g(\theta) \leq r \leq h(\theta)$ for all θ in $[\alpha, \beta]$. Then

$$
\iint_{R} f(r, \theta) d A=\int_{\alpha}^{\beta} f(r, \theta) \cdot r d r d \theta
$$

WeBWorK Problem 10 - discussed last class

Find the volume below $z=33-x^{2}-y^{2}$ and above $z=8$. That is, find the volume enclosed by these two surfaces. The region we are thus integrating over is the circular intersection of the circular paraboloid with the horizontal plane.

$$
\begin{aligned}
V= & \iint_{R} 25-x^{2}-y^{2} d A \\
= & \int_{-5}^{5} \int_{-\sqrt{25-x^{2}}}^{\sqrt{25-x^{2}}} 25-x^{2}-y^{2} d y d x \\
= & \int_{-5}^{5}\left[25 y-x^{2} y-\frac{1}{3} y^{3}\right]_{-\sqrt{25-x^{2}}}^{\sqrt{25-x^{2}}} d x \\
= & \int_{-5}^{5}\left(25 \sqrt{25-x^{2}}-x^{2} \sqrt{25-x^{2}}-\frac{\left(25-x^{2}\right)^{3 / 2}}{3}\right) \\
& \quad-\left(-25 \sqrt{25-x^{2}}+x^{2} \sqrt{25-x^{2}}+\frac{\left(25-x^{2}\right)^{3 / 2}}{3}\right) d x
\end{aligned}
$$

WeBWorK Problem 10 - converting to polar coordinates

$$
\begin{aligned}
V & =\iint_{R} 25-x^{2}-y^{2} d A \\
& =\int_{-5}^{5} \underbrace{50 \sqrt{25-x^{2}}}_{\text {somewhat hard }}-\underbrace{2 x^{2} \sqrt{25-x^{2}}}_{\text {hard }}-\underbrace{\frac{2}{3}\left(25-x^{2}\right)^{3 / 2}}_{\text {hard }} d x
\end{aligned}
$$

But if we convert to polar coordinates
(remember, $\iint_{R} f(r, \theta) d A=\int_{\theta_{1}}^{\theta_{2}} \int_{r_{1}}^{r_{2}} f(r, \theta) r d r d \theta$)

$$
\begin{aligned}
V & =\iint_{R} 25-r^{2} d A=\int_{0}^{2 \pi} \int_{0}^{5}\left(25-r^{2}\right) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{5} 25 r-r^{3} d r d \theta
\end{aligned}
$$

