Daily WeBWorK, Problem 1 1. Given $A_n = \frac{70}{7^n}$, determine: (a) whether $\sum_{n=1}^{\infty} (A_n)$ is convergent. $\sum_{n=1}^{\infty} (A_n) = \sum_{n=1}^{\infty} \frac{70}{7^n}$ Looks like it may be a geometric series • Need to be clear that it's of the form $a \sum_{n=1}^{\infty} r^n$ n=something • The formula $\sum_{n=1}^{\infty} r^n = \frac{1}{1-r}$ only works if we start with n = 0. Method 1: $\sum_{n=1}^{\infty} \frac{70}{7^n} = 70 + \frac{70}{7} + \frac{70}{7^2} + \frac{70}{7^3} + \ldots = 70 \left(1 + \frac{1}{7} + \frac{1}{7^2} + \frac{1}{7^3} + \ldots \right)$ $= 70\left(\sum_{n=1}^{\infty} \frac{1}{7^n}\right) = 70\left(\frac{1}{1-1/7}\right) = 70\left(\frac{7}{6}\right)$ $\sum_{n=1}^{\infty} \frac{70}{7^n} = \frac{70}{7} + \frac{70}{7^2} + \frac{70}{7^3} + \ldots = \sum_{n=1}^{\infty} \frac{70}{7^n} - 70 = 70 \left(\frac{7}{6}\right) - 70$

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 9, 2013 1 / 10

Daily WeBWorK, Problem 1 (continued) 1. Given $A_n = \frac{70}{7^n}$, determine: (a) whether $\sum_{n=1}^{\infty} (A_n)$ is convergent. $\sum_{n=1}^{\infty} (A_n) = \sum_{n=1}^{\infty} \frac{70}{7^n}$ Looks like it may be a geometric series • Need to be clear that it's of the form $a = \sum_{n=1}^{\infty} r^n$ n=something • The formula $\sum_{n=1}^{\infty} r^n = \frac{1}{1-r}$ only works if we start with n = 0. Method 2: $\sum_{n=1}^{\infty} \frac{70}{7^n} = \frac{70}{7} + \frac{70}{7^2} + \frac{70}{7^3} + \dots$ $= \frac{70}{7} \left(1 + \frac{1}{7} + \frac{1}{7^2} + \frac{1}{7^3} + \dots \right)$ $= \frac{70}{7} \sum_{n=0}^{\infty} \frac{1}{7^n} = \frac{70}{7} \left(\frac{1}{1-\frac{1}{2}} \right) = 10 \left(\frac{7}{6} \right)$

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 9, 2013 2 / 10

Daily WeBWorK, Problem 1 (continued)

1. Given
$$A_n = \frac{70}{7^n}$$
, determine:
(b) whether $\{A_n\}$ is convergent.

$$\lim_{n\to\infty}A_n=\lim_{n\to\infty}\frac{70}{7^n}=0$$

Thus the sequence of terms is convergent, and it converges to 0.

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 9, 2013 3 / 10

<□> <同> <同> <目> <日> <同> <日> <日> <日> <日> <日> <日> <日> <日> <日 < □ < 0 <0

Daily WeBWorK, Problem 2

2. Given that $A_n = \frac{9n}{-2n+7}$, determine (a) whether the series $\sum_{n=1}^{\infty} A_n$ converges or diverges.

We don't know how to deal with anything other than geometric series yet, but we do know a series converges if it's sequence of partial sums converges, so let's look at those. I'll just do a few:

$$S_{3} = \sum_{n=1}^{3} \frac{9n}{-2n+7} = \frac{9}{-2+7} + \frac{18}{-4+7} + \frac{27}{-6+7} = \frac{174}{5} \approx 34.8$$

$$S_{7} = \sum_{n=1}^{7} \frac{9n}{-2n+7} = \dots = -36$$

$$S_{10} = \sum_{n=1}^{10} \frac{9n}{-2n+7} = -\frac{-8335}{143} \approx -58.3$$

It appears that this goes up at first, but then starts going down, quite rapidly. Looks like it diverges to $-\infty$

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 9, 2013 4 / 10

Daily WeBWorK, Problem 2

2. Given that
$$A_n = \frac{9n}{-2n+7}$$
, determine
(b) whether the sequence $\{A_n\}$ converges or diverges.

$$\lim_{n \to \infty} \frac{9n}{-2n+7} = (\text{using l'Hôpital's Rule}) - \frac{9}{2}$$

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 9, 2013 5 / 10

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Recall: Goal

Find some techniques to help us determine whether a series is finite or is infinite.

Progress so far: If a series is of the form $a \sum_{k=0}^{\infty} r^k$, where *a* is any constant, then if |r| < 1, the series converges (to $\frac{a}{1-r}$), while if $|r| \ge 1$, the series diverges

But most series aren't geometric series, so we'd like to learn more.

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 9, 2013 6 / 10

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Series We've Seen

Question: What characteristic of a series seems as if it would *guarantee* that the series will diverge?

Math 104-Calculus 2 (Sklensky)

In-Class Work

▶ < E ▶ < E ▶ E ∽ Q ⊂ October 9, 2013 7 / 10

Conjectures

Conjecture 1: If
$$\lim_{k\to\infty} a_k \neq 0$$
, then $\sum_{k=0}^{\infty} a_k$ can not converge.

Conjecture 2: If
$$\lim_{k \to \infty} a_k = 0$$
, then $\sum_{k=1}^{\infty} a_k$ converges.

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 9, 2013 8 / 10

(日) (四) (三) (三) (三)

Conjectures

Conjecture 1: If
$$\lim_{k\to\infty} a_k \neq 0$$
, then $\sum_{k=0}^{\infty} a_k$ can not converge.

Conjecture 2: If
$$\lim_{k \to \infty} a_k = 0$$
, then $\sum_{k=1}^{\infty} a_k$ converges.

One of these conjectures is true ...

Math 104-Calculus 2 (Sklensky)

In-Class Work

(日) (周) (日) (日)

Recall:

$$\sum_{k=0}^{\infty} a_k \stackrel{\text{def}}{=} \lim_{n \to \infty} \sum_{k=0}^n a_k$$

Or in other notation,
$$a_0 + a_1 + a_2 + a_3 + \dots = \lim_{n \to \infty} \left(a_0 + a_1 + a_2 + \dots + a_n \right)$$

We call $\sum_{k=0}^n a_k$ (otherwise known as $a_0 + a_1 + a_2 + \dots + a_n$), the *n*th partial sum, and we denote it S_n .

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 9, 2013 9 / 10

2 sequences associated with the Harmonic Series

For the Harmonic series
$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \dots$$

Sequence of Terms a_k Sequence of Partial Sums S_n
 $a_1 = \frac{1}{1} = 1$
 $a_2 = \frac{1}{2}$
 $a_3 = \frac{1}{3}$
 \vdots
 $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots\}$ $\{1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \dots\}$

Math 104-Calculus 2 (Sklensky)

In-Class Work

October 9, 2013 10 / 10

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Goal:

DarkBlueFind some techniques to help us determine whether a series converges or diverges

Methods we have so far:

Given a series $\sum_{k=M}^{\infty} a_k$,

- Is it a geometric series? If so, we can determine whether or not it converges, and if so, exactly what it converges to.
- Divergence Test: If lim_{k→∞} a_k ≠ 0, the series diverges. If lim_{k→∞} a_k = 0, inconclusive.

But so many series aren't geometric and have $\lim_{k\to\infty} a_k = 0$. How do we deal with *those* series?

For instance, does
$$\sum_{k=1}^{\infty} \frac{1}{k^3}$$
 diverge or converge?

Math 104-Calculus 2 (Sklensky)