Daily WeBWorK, Problem 1

1. Given $A_{n}=\frac{70}{7_{\infty}^{n}}$, determine:
(a) whether $\sum_{n=1}^{\infty}\left(A_{n}\right)$ is convergent.

$$
\sum_{n=1}^{\infty}\left(A_{n}\right)=\sum_{n=1}^{\infty} \frac{70}{7^{n}} \text { Looks like it may be a geometric series }
$$

- Need to be clear that it's of the form a $\sum_{n=\text { something }}^{\infty} r^{n}$
- The formula $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}$ only works if we start with $n=0$.
- Method 1 :

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{70}{7^{n}} & =70+\frac{70}{7}+\frac{70}{7^{2}}+\frac{70}{7^{3}}+\ldots=70\left(1+\frac{1}{7}+\frac{1}{7^{2}}+\frac{1}{7^{3}}+\ldots\right) \\
& =70\left(\sum_{n=0}^{\infty} \frac{1}{7^{n}}\right)=70\left(\frac{1}{1-1 / 7}\right)=70\left(\frac{7}{6}\right) \\
\sum_{n=1}^{\infty} \frac{70}{7^{n}} & =\frac{70}{7}+\frac{70}{7^{2}}+\frac{70}{7^{3}}+\ldots=\sum_{n=0}^{\infty} \frac{70}{7^{n}}-70=70\left(\frac{7}{6}\right)-70
\end{aligned}
$$

Daily WeBWorK, Problem 1 (continued)

1. Given $A_{n}=\frac{70}{7_{\infty}^{n}}$, determine:
(a) whether $\sum_{n=1}^{\infty}\left(A_{n}\right)$ is convergent.

$$
\sum_{n=1}^{\infty}\left(A_{n}\right)=\sum_{n=1}^{\infty} \frac{70}{7^{n}} \text { Looks like it may be a geometric series }
$$

- Need to be clear that it's of the form a $\sum_{n=\text { something }}^{\infty} r^{n}$
- The formula $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}$ only works if we start with $n=0$.
- Method 2:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{70}{7^{n}} & =\frac{70}{7}+\frac{70}{7^{2}}+\frac{70}{7^{3}}+\ldots \\
& =\frac{70}{7}\left(1+\frac{1}{7}+\frac{1}{7^{2}}+\frac{1}{7^{3}}+\ldots\right) \\
& =\frac{70}{7} \sum_{n=0}^{\infty} \frac{1}{7^{n}}=\frac{70}{7}\left(\frac{1}{1-\frac{1}{7}}\right)=10\left(\frac{7}{6}\right)
\end{aligned}
$$

Daily WeBWorK, Problem 1 (continued)

1. Given $A_{n}=\frac{70}{7^{n}}$, determine:
(b) whether $\left\{A_{n}\right\}$ is convergent.

$$
\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} \frac{70}{7^{n}}=0
$$

Thus the sequence of terms is convergent, and it converges to 0 .

Daily WeBWorK, Problem 2

2. Given that $A_{n}=\frac{9 n}{-2 n+7}$, determine
(a) whether the series $\sum_{n=1}^{\infty} A_{n}$ converges or diverges.

We don't know how to deal with anything other than geometric series yet, but we do know a series converges if it's sequence of partial sums converges, so let's look at those. I'll just do a few:

$$
\begin{aligned}
& S_{3}=\sum_{n=1}^{3} \frac{9 n}{-2 n+7}=\frac{9}{-2+7}+\frac{18}{-4+7}+\frac{27}{-6+7}=\frac{174}{5} \approx 34.8 \\
& S_{7}=\sum_{n=1}^{7} \frac{9 n}{-2 n+7}=\ldots=-36 \\
& S_{10}=\sum_{n=1}^{10} \frac{9 n}{-2 n+7}=-\frac{-8335}{143} \approx-58.3
\end{aligned}
$$

It appears that this goes up at first, but then starts going down, quite rapidly. Looks like it diverges to $-\infty$

Daily WeBWorK, Problem 2

2. Given that $A_{n}=\frac{9 n}{-2 n+7}$, determine
(b) whether the sequence $\left\{A_{n}\right\}$ converges or diverges.

$$
\lim _{n \rightarrow \infty} \frac{9 n}{-2 n+7}=\text { (using l'Hôpital's Rule) }-\frac{9}{2}
$$

Recall: Goal

Find some techniques to help us determine whether a series is finite or is infinite.

Progress so far: If a series is of the form a $\sum_{k=0}^{\infty} r^{k}$, where a is any constant, then if $|r|<1$, the series converges (to $\frac{a}{1-r}$), while if $|r| \geq 1$, the series diverges

But most series aren't geometric series, so we'd like to learn more.

Series We've Seen

Conv	$\sum_{k=0}^{\infty} \frac{1}{2^{k}}$ $\sum_{k=0}^{\infty} \frac{1}{\sqrt{2}^{k}}$ $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ $\sum_{k=0}^{\infty} \frac{3^{k}}{(-4)^{k}}$ $\sum_{k=0}^{\infty} \frac{4}{3^{k}}$$\sum_{k=1}^{\infty} \frac{50}{5^{n}}$				
$\frac{1}{2^{k}} \rightarrow 0$	$\frac{1}{\sqrt{2}^{k}} \rightarrow 0$	$\frac{1}{k^{2}} \rightarrow 0$	$\frac{3}{(-4)^{k}} \rightarrow 0$	$\frac{4}{3^{k}} \rightarrow 0$	$\frac{50}{5^{n}} \rightarrow$

Div | $\sum_{k=0}^{\infty} 2^{k}$ | $\sum_{k=0}^{\infty} 1$ | $\sum_{k=0}^{\infty}\left(\frac{4}{3}\right)^{k}$ |
| :---: | :---: | :---: |
| $2^{k} \rightarrow \infty$ | $\sum_{k=1}^{\infty} \frac{9 n}{-2 n+7}$ | |
| | $1 \rightarrow 1$ | $\left(\frac{4}{3}\right)^{k} \rightarrow \infty$ |

Question: What characteristic of a series seems as if it would guarantee that the series will diverge?

Conjectures

Conjecture 1: If $\lim _{k \rightarrow \infty} a_{k} \neq 0$, then $\sum_{k=0}^{\infty} a_{k}$ can not converge.

Conjecture 2: If $\lim _{k \rightarrow \infty} a_{k}=0$, then $\sum_{k=1}^{\infty} a_{k}$ converges.

Conjectures

Conjecture 1: If $\lim _{k \rightarrow \infty} a_{k} \neq 0$, then $\sum_{k=0}^{\infty} a_{k}$ can not converge.

Conjecture 2: If $\lim _{k \rightarrow \infty} a_{k}=0$, then $\sum_{k=1}^{\infty} a_{k}$ converges.

One of these conjectures is true ...

Recall:

$$
\sum_{k=0}^{\infty} a_{k} \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k}
$$

Or in other notation,

$$
a_{0}+a_{1}+a_{2}+a_{3}+\ldots=\lim _{n \rightarrow \infty}\left(a_{0}+a_{1}+a_{2}+\ldots+a_{n}\right)
$$

We call $\sum_{k=0}^{n} a_{k}$ (otherwise known as $a_{0}+a_{1}+a_{2}+\ldots+a_{n}$), the nth partial sum, and we denote it S_{n}.

2 sequences associated with the Harmonic Series

For the Harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\ldots$:
Sequence of Terms a_{k} Sequence of Partial Sums S_{n}

$$
\begin{array}{l|l}
a_{1}=\frac{1}{1}=1 & S_{1}=\sum_{k=1}^{1} \frac{1}{k}=\frac{1}{1}=1 \\
a_{2}=\frac{1}{2} & S_{2}=\sum_{k=1}^{2} \frac{1}{k}=1+\frac{1}{2}=\frac{3}{2} \\
a_{3}=\frac{1}{3} & S_{3}=\sum_{k=1}^{3} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}=\frac{11}{6} \\
\vdots & \vdots \\
\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \ldots\right\} & \left\{1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \ldots\right\}
\end{array}
$$

Goal:

DarkBlueFind some techniques to help us determine whether a series converges or diverges
Methods we have so far:
Given a series $\sum_{k=M}^{\infty} a_{k}$,

- Is it a geometric series? If so, we can determine whether or not it converges, and if so, exactly what it converges to.
- Divergence Test: If $\lim _{k \rightarrow \infty} a_{k} \neq 0$, the series diverges. If $\lim _{k \rightarrow \infty} a_{k}=0$, inconclusive.

But so many series aren't geometric and have $\lim _{k \rightarrow \infty} a_{k}=0$. How do we deal with those series?
For instance, does $\sum_{k=1}^{\infty} \frac{1}{k^{3}}$ diverge or converge?

