
4/19/06 Solutions to In-Class Work Calculus 2

Determine whether each series converges or diverges. If the series converges,
find a number N such that the partial sum SN approximates the sum of
the series within .001. If the series diverges, find a number N such that
SN ≥ 1000.

1.
∞∑

n=4

2n

(n2 + 5)2/3

• Determine Convergence or Divergence

– Try the nth term test:

As has happened so often, the nth term test is inconclusive.
(The bottom behaves more or less like n4/3, which is (just
barely) a higher power than the numerator. Since the denom-
inator therefore increases more rapidly than the numerator,
the limit is 0.)

– Try the Integral test:

After discovering that the nth term test isn’t going to help
me,I have to determine which test to use. I see that it’s in a
form that I’m somewhat comfortable developing a comparison
from, but I also see that I’ve got n2 + 5 in the denominator
and 2n in the numerator, which makes it amenable to the
integral test.

Since the integral test is easier to develop approximations
from, I’ll use the integral test.

Incidentally, if you do try to determine the conver-
gence/divergence of this using the comparison test it
ends up being more difficult than you might at first
think.

∗ Check that the integral test applies:

Is f(x) =
2x

(x2 + 5)2/3
continuous, positive, and (eventu-

ally) decreasing? Continuous and positive, yes. But de-
creasing?
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If I want to absolutely convince myself, I can take the
derivative and make sure it’s negative. So ...

d

dx

(
2x

(x2 + 5)2/3

)
=

(x2 + 5)2/3 · 2− 2x · (2/3)(x2 + 5)−1/3(2x)

(x2 + 5)4/3

=
(6(x2 + 5)− 8x2)/3(x2 + 5)1/3

(x2 + 5)4/3

=
−2x2 + 30

3(x2 + 5)5/3

Since 3(x2+5)5/3 is always positive, the sign of this deriva-
tive depends entirely upon the sign of the numerator.
−2x2 + 30 ≤ 0 when 2x2 ≥ 30, or x2 ≥ 15, or x ≥ 4
or so. So this function does decrease monotonically, once
we get past x = 4.

∗ Apply the Integral Test :

Since the integral test applies, we know that the series
we’re interested in will behave in the same way that the

integral

∫ ∞

x=4

2x

(x2 + 5)2/3
dx does.

So . . . does

∫ ∞

x=4

2x

(x2 + 5)2/3
dx converge or diverge?

Use substitution:

u = x2 + 5

du = 2x dx

when x = 4 u = 21

as x →∞ u →∞ also.

∫ ∞

4

2x

(x2 + 5)2/3
dx = lim

t→∞

∫ t

21

1

u2/3
du,

which we know by the p-test diverges.
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Therefore, by the integral test, our series also diverges,
since the series does whatever the integral does.

• Find a number N such that SN ≥ 1000.

How do I know such a number N even exists? Well, since

∞∑
n=0

2n

(n2 + 5)2/3

diverges (and since it’s a positive term series), I know that if I
add up the infinite number of terms, I’ll get infinity. Since infinity
is bigger than any finite number, that must mean that at some
point in the adding process, I’m passing 1000, and then as I add
in more terms, eventually I’ll pass 1000000, etc. So if my series
diverges, I can find a partial sum that’s bigger than any number
I might choose.

How are we going to find a number N so that

N∑
n=4

2n

(n2 + 5)2/3
≥ 1000?

We can use an idea you developed on your homework. You found
that as long as a(x) is continuous, positive, and decreasing on
[1,∞),

N∑
k=1

ak ≥
∫ N+1

1

a(x) dx.

Here, our lower limit is 4 rather than 1, but as long as our func-
tion is continuous, positive, and decreasing on [4,∞), that doesn’t
matter.

So if we can find N so that

∫ N+1

4

2x

(x2 + 5)2/3
≥ 1000, then we’ll

know that SN ≥ 1000 also.
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∫ N+1

4

2x

(x2 + 5)2/3
dx ≥ 1000∫ x=N+1

x=4

u−2/3 du ≥ 1000

3u1/3
∣∣x=N+1

x=4
≥ 1000

3(x2 + 5)1/3
∣∣N+1

4
≥ 1000

3[(N + 1)2 + 5]1/3 − 3(21)1/3 ≥ 1000

3[(N + 1)2 + 5]1/3 ≥ 1000 + 8.277

((N + 1)2 + 5)1/3 ≥ 1008.277

3
(N + 1)2 + 5 ≥ (336.09)3

(N + 1)2 ≥ (3.8× 107)− 5

N + 1 ≥
√

3.8× 107

N ≥ 6161.46− 1

N = 6161

Therefore
6161∑
n=4

2n

(n2 + 5)2/3
> 1000.

Check using Maple:

> evalf(sum(2*n/(n^2+5)^(2/3),n=4..6161));

1000.523919

Sure enough, I’ve found a value of N that works.

You might be wondering how much bigger this value of N is than
is really necessary. In other words, how much larger of an N did
we produce by working with the smaller integral rather than with
the actual sum. We can just experiment in Maple and (keeping
in mind that there might be some approximation error), it seems
that you have to add up to N = 6157 to actually go over 1000,
so we’re only adding 4 more terms than was absolutely necessary.
Not bad!
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2.
∞∑

k=0

k

k6 + 17

• Determine Convergence or Divergence:

– Try the nth term test:

A single application of l’hopital’s rule tells me that

lim
k→∞

k

k6 + 17
= lim

k→∞

1

6k5
= 0.

Thus once again the nth term test is inconclusive.

– Try the comparison test:

It’s leaping out at me that

k

k6 + 17
≤ k

k6
=

1

k5
.

Thus, I can compare the sums

∞∑
k=0

k

k6 + 17
≤

∞∑
k=0

1

k5
. . .

... except that the series on the right will have a problem at
k = 0. The series on the left doesn’t have any problems at
k = 0, however, so we deal with this by breaking the series on
the left up:

∞∑
k=0

k

k6 + 17
=

0

06 + 17
+

∞∑
k=1

k

k6 + 17
= 0 +

∞∑
k=1

k

k6 + 17
.

Now we can say:

∞∑
k=0

k

k6 + 17
≤ 0 +

∞∑
k=1

1

k5
=

∞∑
k=1

1

k5
.

The series on the right converges because p > 1, so our smaller
series also converges by the comparison test.
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• Find a number N so that the partial sum SN is within .001
of the value of the series.

In other words, find a number N so that
∑N

k=0
k

k6+17
is within .001

of
∑∞

k=0
k

k6+17
.

That is, we want to find N so that

∞∑
k=0

k

k6 + 17
−

N∑
k=0

k

k6 + 17
≤ .001.

Since

∞∑
k=0

ak −
N∑

k=0

ak = (a0 + a1 + . . . + aN−1 + aN + aN+1 + . . .)

−(a0 + a1 + . . . + aN−1 + aN)

= aN+1 + aN+2 + . . .

=
∞∑

k=N+1

ak

= RN ,

we want to find N so that RN ≤ .001.

Goal: Find N so that RN ≤ .001.

I only know how to do this in a few limited cases – geometric series
and with the integral test. I can’t integrate my term, and it’s not
a geometric series. Where to go from here?

Well, we know from the comparison we already did that

RN ≤
∞∑

k=N+1

1

k5
.

So if we make the sum on the right be sufficiently small, the re-
mainder on the left will be as well.

Use the integral test results on the sum on the right:

Rn ≤
∞∑

k=N+1

1

k5
≤

∫ ∞

N

1

x5
dx.
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∫ ∞

N

1

x5
dx = lim

t→∞

[
− 1

4x4

]t

N

= lim
t→∞

− 1

4t4
+

1

4N4

=
1

4N4

Thus if we find N so that
1

4N4
≤ .001, then RN ≤ .001.

1

4N4
≤ .001 ⇒ 4N4 ≥ 1000 ⇒ N4 ≥ 250 ⇒ N ≥ 3.98.

Use N = 4. We just found that

∞∑
k=5

1

k5
≤ .001,

which means that our smaller remainder R4 will also be less than
.001.

From that, we can conclude that
4∑

k=0

k

k6 + 17
is within .001 of

∞∑
k=0

k

k6 + 17
.
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