
4/21/06 Solutions to In-Class Work Calculus 2

1. Use the ratio test to decide the convergence or divergence of

(a)
∞∑

k=12

10k

k!
:

This is a positive term series, so the ratio test applies. We want
to see whether L = limk→∞

ak+1

ak
is less than 1 or not.

L = lim
k→∞

ak+1

ak

= lim
k→∞

10k+1

(k + 1)!

10k

k!

.

Simplifying, we find that

L = lim
k→∞

10k+1

(k + 1)!
· k!

10k
= lim

k→∞

10k+1

10k
· k!

(k + 1)!
= lim

k→∞

10

k + 1
= 0.

Since L < 1, the ratio test tells us this series converges!

(b)
∞∑

n=1

2n

n50

2n

n50
> 0 for all n ≥ 1, so the ratio test applies.

Let

L = lim
n→∞

an+1

an

= lim
n→∞

2n+1

(n + 1)50

2n

n50

.

Again, we want to see whether or not L < 1. Simplifying, we find

L = lim
n→∞

2n+1

(n + 1)50
·n

50

2n
= lim

n→∞

2n+1

2n
· n50

(n + 1)50
= lim

n→∞
2

(
n

n + 1

)50

= 2.

Since L > 1, the ratio test tells us that this series diverges.
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2. Use whatever test seems appropriate to determine the convergence or
divergence of

(a)
∞∑

m=1

m

(1 + m2)5

• nth term test: Since limm→∞
m

(1+m2)5
= 0, the nth term test

is inconclusive.

• Integral test: This series is screaming integral test to me,
because if I let u = 1 + x2, then 1

2
du = x dx.

However, before I can use the integral test, I need to make
sure it applies.

Is a(x) =
x

(1 + x2)5
continuous, positive and de-

creasing on [1,∞)?

– On [1,∞), both the numerator and the denomina-
tor are positive, so a(x) is positive.

– On [1,∞), the denominator is never 0 and both the
numerator and denominator are continuous. Thus
a(x) is continuous.

– Is a(x) decreasing on a(x)?
While it’s not a true proof, it’s usually sufficient to
look at a graph of a(x) from 1 (or whatever your
lower limit of integration is) to somewhere between
10 and 50.

x

7.2

0.02

5.6

0.0

9.68.88.0

0.03

0.025

0.015

6.4

0.01

0.005

4.84.03.22.41.6
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It looks pretty clear that this function will continue
to decrease, with the x-axis as a horizontal asymp-
tote.

Note: If you have any doubts, and you want
to show that a(x) really is decreasing all the
way out to infinity, then you need to take the
derivative a′(x), and show that it’s always neg-
ative (or at any rate, is eventually negative).

Thus a(x) is continuous, positive, and decreasing on
[1,∞), and so the integral test applies.

The integral test tells me that my sum does whatever the
corresponding improper integral does. That is

∞∑
m=1

m

(1 + m2)5
converges ⇐⇒

∫ ∞

1

x

(1 + x2)5
dx converges.

We’ll use a substitution for this integral:

u = 1 + x2

1

2
du = x dx

x = 1 ⇒ u = 2

x→∞ ⇒ u→∞

∫ ∞

1

x

(1 + x2)5
dx =

1

2

∫ ∞

2

1

u5
du,

which we know converges, by the p-test.

So the integral, and hence the series
∞∑

m=1

m

(1 + m2)5
, converges.

• Comparison Test: While I chose to use the integral test,
the comparison test would have also worked on this problem;
the easiest comparison to use would be

m

(1 + m2)5
≤ m

m10
=

1

m9
.
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(b)
∞∑

j=1

1

j + ej

• nth term test: limj→∞
1

j+ej = 0, so the nth term test is
inconclusive.

• Comparison Test: While I wouldn’t particularly care to
integrate 1

x+ex , I have no problems coming up with a compar-
ison, so I’m going to go with the comparison test.
Next, I have to choose which of the two obvious comparisons
to use.

j + ej ≥ j, ej

⇒ 1

j + ej
≤ 1

j
,

1

ej

⇒
∞∑

j=1

1

j + ej
≤

∞∑
j=1

1

j
,
∞∑

j=1

1

ej

Since
∑∞

j=1
1
j

is the harmonic series, which we know diverges,
and since being less than or equal to a divergent series is not
useful, we won’t use that comparison.

On the other hand,
∑∞

j=1
1
ej is a geometric series, with r < 1,

so it converges. Since our series is less than this convergent
series, this is a useful comparison.

Thus
∞∑

j=1

1

j + ej
converges.

(c)
∞∑

n=0

n3

n!

• nth term test: At this point, you may not be sure whether
n! is larger than n3 or not. Perhaps we can figure that out
later. So we’ll skip the nth term test.

• Ratio Test:
With the factorial in it, this one is screaming ratio test!
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L = lim
n→∞

an+1

an

= lim
n→∞

(n + 1)3

(n + 1)!
· n!

n3

= lim
n→∞

(
n + 1

n

)3
1

n + 1
= 1 · 0 = 0

< 1

Since L < 1, the series
∞∑

n=0

n3

n!
converges.

• Back to the nth term test:
What can we say about limn→∞

n3

n!
?

From the nth term test, we know that if this limit turns out
not to be zero, our series must diverge. But we just showed
that our series converges. That has to mean that the limit of
the nth term is zero.
Conclusion: limn→∞

n3

n!
= 0

In fact, limn→∞
nk

n!
= 0 for any k > 0.

(d)
∞∑

k=5

k4 + 400k3

1000k4 + k

• nth term test:

lim
k→∞

k4 + 400k3

1000k4 + k
=

1

1000
6= 0.

Therefore, while the sequence of terms converges to 1/1000,

the series
∞∑

k=5

k4 + 400k3

1000k4 + k
diverges by the nth term test.
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