Recall:

- 1. **Definition:** An alternating series is one whose terms alternate in sign. That is, a series of the form $c_1 c_2 + c_3 \cdots$ where c_i is positive.
- 2. Alternating Series Test: Consider the alternating series $c_1 c_2 + c_3 \cdots = \sum_{k=1}^{\infty} (-1)^{k+1} c_k$ where $c_k \ge 0$.

If $\lim_{k\to\infty} c_k = 0$, then the series converges and its limit lies between any two consecutive partial sums.

That is, if the series converges to S, then S lies between S_n and S_{n+1} for any n.

3. A series converges **absolutely** if $\sum |a_k|$ converges; it converges **conditionally** if $\sum a_k$ converges but $\sum |a_k|$ diverges.

April 25, 2006

Sklensky

Do the following series converge conditionally, converge absolutely, or diverge?

1.
$$\sum_{n=4}^{\infty} (-1)^{n+1} \frac{n}{n^2 - 1}$$

2.
$$\sum_{i=2}^{\infty} (-1)^i \frac{1}{i(\ln(i))^8}$$

3.
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k^2}{k^2 + 1}$$

4.
$$\sum_{k=1}^{\infty} \frac{\cos(k)}{k^4 + 1}$$

April 25, 2006

Sklensky