Recall:

1. Definition: An alternating series is one whose terms alternate in sign. That is, a series of the form $c_{1}-c_{2}+c_{3}-\cdots$ where c_{i} is positive.
2. Alternating Series Test: Consider the alternating series $c_{1}-c_{2}+c_{3}-\cdots=\sum_{k=1}^{\infty}(-1)^{k+1} c_{k}$ where $c_{k} \geq 0$. If $\lim _{k \rightarrow \infty} c_{k}=0$, then the series converges and its limit lies between any two consecutive partial sums.

That is, if the series converges to S, then S lies between S_{n} and S_{n+1} for any n.
3. A series converges absolutely if $\sum\left|a_{k}\right|$ converges; it converges conditionally if $\sum a_{k}$ converges but $\sum\left|a_{k}\right|$ diverges.

Do the following series converge condititonally, converge absolutely, or diverge?

1. $\sum_{n=4}^{\infty}(-1)^{n+1} \frac{n}{n^{2}-1}$
2. $\sum_{i=2}^{\infty}(-1)^{i} \frac{1}{i(\ln (i))^{8}}$
3. $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k^{2}}{k^{2}+1}$
4. $\sum_{k=1}^{\infty} \frac{\cos (k)}{k^{4}+1}$
