Alternating Series Test:

Consider the alternating series

$$
c_{1}-c_{2}+c_{3}-\cdots=\sum_{k=1}^{\infty}(-1)^{k+1} c_{k},
$$

where $c_{k} \geq 0$.
If $\lim _{k \rightarrow \infty} c_{k}=0$, then the series converges and its limit lies between any two consecutive partial sums. That is, if the series converges to S, then S lies between S_{n} and S_{n+1} for any n.

In particular, the error in using S_{n} to approximate S is bounded as follows:

$$
\left|S-S_{n}\right| \leq c_{n+1} .
$$

The following series converge (one absolutely, the other conditionally). In each case, calculate S_{1000} using Maple, and determine how close this approximates the value of the series.

1. $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k^{2}+1}$
2. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{5}}{n^{6}+17}$
