A series is an infinite sum.
A few examples:

$$
\begin{array}{ll}
\sum_{\substack{k=0}}^{\infty} \frac{27 k-42}{k^{3}+37} & \text { is a series } \\
\sum_{j=3}^{100000}\left(\frac{4}{5}\right)^{j} & \text { is not a series } \\
3+7+42-16+1000-\pi+\ldots & \text { is a series } \\
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5} & \text { is not a series }
\end{array}
$$

Example: $\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k}$ is a geometric series, with $r=\frac{1}{2}$.
The associated sequence of terms $\left\{a_{k}\right\}$ is

$$
\left\{\left(\frac{1}{2}\right)^{k}\right\}_{k=0}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right\}
$$

The associated sequence of partial sums S_{n} is

$$
\begin{aligned}
&\left\{1,1+\frac{1}{2}, 1+\frac{1}{2}+\frac{1}{4}, 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right. \\
&\left.1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}, \ldots\right\}=\left\{1, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \frac{31}{16}, \ldots\right\}
\end{aligned}
$$

For each series below:
(a) Find a_{2} and $a_{3} ; S_{2}$ and S_{3}.
(b) Does the series converge or diverge? If it converges, find the value to which it converges.

1. $\sum_{k=0}^{\infty} \frac{4}{3^{k}}$
2. $\sum_{k=0}^{\infty} \frac{2^{k}}{(-5)^{k}}$
