For each series below, does the series converge or diverge? If it does converge, find the value to which it converges. Note in each case where the series starts!

1. $\sum_{k=2}^{\infty} \frac{5^{k}}{2^{k}}$
2. $\sum_{k=42}^{\infty} \frac{1}{5^{k}}$

Do the following series converge or diverge?

1. $\sum_{k=1}^{\infty} \frac{2 k^{2}-3}{5 k^{2}+6 k}$
2. $\sum_{k=98}^{\infty} \frac{3^{k}+\sin (k)}{\cos (k)+5}$
3. $\sum_{k=2}^{\infty} \frac{5^{k}-6 k-27}{7^{k}+14 k^{2}+k}$
