Let $I=\int_{-\pi}^{\pi} e^{\sin (x)} d x$

1. Approximate I accurate within 0.01 using a right sum

The question here is: how many subintervals n should I use in my right sum to guarantee that R_{n} is within .01 of I.
That is,
Question: For what n are we guaranteed that $\left|I-R_{n}\right| \leq .01$. ?
We want $\left|I-R_{n}\right| \leq .01$.
We know from Theorem 3 that $\left|I-R_{n}\right| \leq \frac{K_{1}(b-a)^{2}}{2 n}$.
Need to find: n so that $\frac{K_{1}(b-a)^{2}}{2 n} \leq .01$. Then we'll have that

$$
\left|I-R_{n}\right| \leq \frac{K_{1}(b-a)^{2}}{2 n} \leq .01
$$

or in other words, we'll have that, as desired, $\left|I-R_{n}\right| \leq .01$.
Our first step must be to find K_{1}. In order to do that, we graph $\left|f^{\prime}(x)\right|$ over $[-\pi, \pi]$ on Maple.
$f:=x->\exp (\sin (x))$;
plot(abs(diff(f(x), x)), x=-Pi..Pi);

K_{1} needs to be greater than $\left|f^{\prime}(x)\right|$ on the interval $[-\pi, \pi]$, so I look at the graph of $\left|f^{\prime}(x)\right|$ above and choose a number I think looks higher than the graph ever gets. It looks to me as if $\left|f^{\prime}(x)\right| \leq 1.5$. I don't just assume I'm right, of course - I plot the horizontal line $y=1.5$ together with $\left|f^{\prime}(x)\right|$ to make sure that the horizontal line is always higher than the absolute value of the derivative:
plot([1.5, abs(diff(f(x),x))],x=-Pi..Pi, color=[black,red]);

Now that I know that for all x in $[-\pi, \pi],\left|f^{\prime}(x)\right| \leq 1.5$, I know that I can choose to use

$$
K_{1}=1.5 .
$$

Notice that I could also choose to use any number larger than 1.5 as K_{1}. Doing so would produce more subintervals in the end. I could also choose to try to hone in a little more closely on a smaller K_{1} by changing the constant in the above graph, and changing the interval you're graphing over to zoom in on the maxima. It turns out that about the smallest value of K_{1} you can reasonably use is $K_{1}=1.46$.
It's time to find the number of subintervals n so that $\frac{K_{1}(b-a)^{2}}{2 n} \leq .01$:

$$
\begin{aligned}
\frac{K_{1}(b-a)^{2}}{2 n} & \leq .01 \\
\frac{1.5[\pi-(-\pi)]^{2}}{2 n} & \leq .01 \\
\frac{1.5(2 \pi)^{2}}{2 n} & \leq .01 \\
\frac{6 \pi^{2}}{2 n} & \leq \frac{1}{100} \\
300 \pi^{2} & \leq n \\
2960.88 & \leq n \\
2961 & =n
\end{aligned}
$$

Therefore I is within .01 of R_{2961}.
I use Maple to find R_{2961} :

```
with(student):
rightsum(f(x), x=-Pi..Pi, 2961);
evalf(%);
```

And I end up with $R_{2961}=7.954926525$, so I is within .01 of 7.955 .
2. Approximate $I=\int_{-\pi}^{\pi} e^{\sin (x)} d x$ within 0.001 using a midpoint sum

Once again, the question is how many subintervals do I need, this time in order to guarantee that M_{n} is within .001 of I ?
We want $\left|I-M_{n}\right| \leq .001$.
We know $\left|I-M_{n}\right| \leq \frac{K_{2}(b-a)^{3}}{24 n^{2}}$.
Need to find: n so that $\frac{K_{2}(b-a)^{3}}{24 n^{2}} \leq .001$.
In order to find a good choice for K_{2}, we graph $\left|f^{\prime \prime}(x)\right|$ over $[-\pi, \pi]$ on Maple:

```
plot(abs(diff(f(x),x,x)), x=-Pi..Pi);
```


It looks like $\left|f^{\prime \prime}(x)\right|$ is always less than 2.75 or so. I graph both $y=2.75$ and the absolute value of the second derivative to see if I'm right:

```
plot([2.75,abs(diff(f(x),x,x))], x=-Pi..Pi, color=[black,red]);
```


I don't know if you can see it at this scale, but indeed the horizontal line at $y=2.75$ is always above the absolute value of the second derivative on the interval $[-\pi, \pi]$, and so I can use

$$
K_{2}=2.75
$$

And now I'm ready to find the number of subintervals I need:

$$
\begin{aligned}
\frac{K_{2}(b-a)^{3}}{24 n^{2}} & \leq .001 \\
\frac{2.75(2 \pi)^{3}}{24 n^{2}} & \leq .001 \\
\frac{22 \pi^{3}}{24 n^{2}} & \leq \frac{1}{1000} \\
\frac{11000 \pi^{3}}{12} & \leq n^{2} \\
28422.42 & \leq n^{2} \\
168.5895023 & \leq n \\
n & =169
\end{aligned}
$$

Therefore I is within .001 of M_{169}.
I use Maple to find M_{169} :

```
middlesum(f(x),x=-Pi..Pi, 169);
```

evalf(\%);

And I end up with $M_{169}=7.954926523$, so I is within .001 of 7.9549 .

