
Math 104 Solutions to In-Class Work 2/27/06

1.

∫ e3

1

ln(x)

x
dx

When we write the integrand as a product

ln(x)

x
= ln(x) · 1

x
,

we see that the product is of a function and its derivative. That is,
the two pieces of the product are directly related by differentiation. In
that case, we first try substitution:

Substitution:

Let u = ln(x). Then du =
1

x
dx. Substituting in, we get

∫ e3

1

ln(x)

x
dx =

∫ x=e3

x=1

u du

=

[
1

2
u2

]x=e3

x=1

=

[
1

2
(ln(x))2

]e3

1

=
1

2
[(ln(e3))2 − (ln(1))2]

=
1

2
(9− 0) =

9

2

Verify:
d

dx

(
(ln(x))2

2

)
=

1

2
· (2) · (ln(x)) · 1

x
=

ln(x)

x
.

2.

∫ e3

1

ln(x)

x2
dx

This integral looks remarkably similar to the first one. This time,
however, when we write the integrand as a product

(ln(x)) · ( 1

x2
)

we see that we no longer have a function and its derivative. Since we
have a product of two unrelated pieces, we try integration by parts.
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Try:

u = ln(x) dv = 1
x2 dx

du =
1

x
dx v = − 1

x

The notation for integration by parts is not really amenable to defi-
nite integrals, so we’ll begin with the related indefinite integral. Using∫

udv = uv −
∫

vdu, we get∫
ln(x)

x2
dx = uv −

∫
v du

= − ln(x)

x
+

∫
1

x2
dx

= − ln(x)

x
− 1

x
+ C

= − ln(x)− 1

x
+ C

Still have to plug in limits, but first:

Verify:

d

dx

(
− ln(x)

x
− 1

x
+ C

)
=

x(
−1

x
) + ln(x)(1)

x2
+

1

x2
=
−1 + ln(x) + 1

x2
=

ln(x)

x2
.

Finishing the definite integral now:

∫ e3

1

ln(x)

x2
dx = −(ln(e3)− 1)

e3
+

(ln(1)− 1)

1

= −3− 1

e3
+
−1

1

= − 2

e3
− 1

3.

∫
ex sin(x) dx

Since the integrand is a product of two ”building block” functions that
are completely unrelated by differentiation, we know we’re using in-
tegration by parts. Neither ex and sin(x) become more complicated
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upon antidifferentiation, or less complicated upon differentiation, so
our choice for u and dv is random.

Let

u = ex dv = sin(x) dx
du = ex v = − cos(x)

Using
∫

u dv = uv −
∫

v du, we get∫
ex sin(x) dx = −ex cos(x) +

∫
ex cos(x) dx

We have another integral containing a product of unrelated terms, so
we use integration by parts. We’re afraid, though, that we’re just going
in a circle.

u = ex dv = cos(x) dx
du = ex v = sin(x)∫

ex sin(x) dx = −ex cos(x) + ex sin(x)−
∫ x

e

sin(x) dx.

At first, it looks like our fears of circular calculations have come true.
But notice that the integral on the right is the same as the integral
on the left. We can add that integral to both sides of the equations,
giving us twice the integral on the left, and eliminating the integral on
the right.

2

∫
ex sin(x) dx = −ex cos(x) + ex sin(x)∫
ex sin(x) dx =

ex

2
(sin(x)− cos(x))

4.

∫
sec(x) dx. Hint: Consider multiplying by 1 in the form

sec(x) + tan(x)

sec(x) + tan(x)
.

∫
sec(x) dx =

∫
sec(x) · sec(x) + tan(x)

sec(x) + tan(x)
dx

=

∫
sec2(x) + sec(x) tan(x)

sec(x) + tan(x)
dx
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Substitution:

Let u = sec(x) + tan(x). Then du = sec(x) tan(x) + sec2(x) dx.

Substituting in for u and du, we get∫
sec(x) dx =

∫
1

u
du

= ln | sec(x) + tan(x)|+ C

Verify:

d

dx
(ln | sec(x)+tan(x)|+C) =

1

sec(x) + tan(x)
·(sec(x) tan(x)+sec2(x)) = sec(x).

5.

∫
x
√

3− 2x dx

When you look at this, you see a product of two seemingly unrelated
terms, one of which is a composition. The product of seeminly unre-
lated terms says ”integration by parts” to you, and the composition
says ”substitution” to you.

Let’s try both methods:

Method 1: Integration by parts:

x differentiates away to just 1, and
√

3− 2x isn’t hard to antidiffer-
entiate with a little substitution, so we’ll try those choices for u and
dv:

Let

u = x dv =
√

3− 2x dx
du = dx v = (using a substitution with w = 3− 2x),

⇒ v = −1

2
· 2

3
(3− 2x)3/2 = −1

3
(3− 2x)3/2

Using

∫
u dv = uv −

∫
v du, we find that with this choice of u and

dv, we get:∫
x
√

3− 2x dx = −x

3
(3− 2x)3/2 +

1

3

∫
(3− 2x)3/2 dx.
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The integral on the right can be done using the same substitution we
used before:∫

x
√

3− 2x dx = −x

3
(3− 2x)3/2 − 1

3
· 1

2
· 2

5
(3− 2x)5/2 + C

= −x

3
(3− 2x)3/2 − 1

15
(3− 2x)5/2 + C

= −(3− 2x)3/2(
x

3
+

1

15
(3− 2x)) + C

= −(3− 2x)3/2(
x

3
+

1

5
− 2x

15
) + C

= −(3− 2x)3/2(
5x

15
− 2x

15
+

1

5
) + C

= −(3− 2x)3/2(
3x

15
+

1

5
) + C

= −(3− 2x)3/2(
x + 1

5
) + C

= −1

5
(x + 1)(3− 2x)3/2 + C

You’ll notice I did a lot of algebraic simplification. Anything after the
first line is perfectly acceptable; it’s just that since I’m going to be
doing this in two different ways, I want you to be able to see that the
results are the same either way.

Method 2: Substitution:

The composition is (3 − 2x)1/2, and the inside of that composition is
3− 2x, so that’s what we’ll let u be.

Let u = 3− 2x. Then du = −2 dx, so −1

2
du = dx.

When I make the substitution, I realize I have a problem:∫
x
√

3− 2x dx = −1

2

∫
x · u1/2 du.

While oftentimes this sort of situation (mixed x’s and u’s) is irre-
deemable, this particular situation is an example of a sometime handy
technique. We can actually solve for x in terms of u, in this particular
situation, and that will allow us to get rid of that last x.
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Since u = 3− 2x, −1

2
(u− 3) = x. Thus we have∫

x
√

3− 2x dx =
1

4

∫
(u− 3)u1/2 du.

If you compare the left side to the right side, you can see what we’ve
done with our little substitution. Originally, we had a product of two
terms: one was just a single x, while the other was the square root
of a difference, where the difference involved a x term and a constant.
This can not be simplified in any useful manner. Our substitution has
moved the difference to outside the square root, and moved the simple
degree 1 term inside the square root. This can be simplifed in a useful
way: ∫

x
√

3− 2x dx =
1

4

∫
u3/2 − 3u1/2 du

=
1

4
(
2

5
u5/2 − 3 · 2

3
u3/2) + C

=
1

10
u5/2 − 1

2
u3/2 + C

=
1

10
(3− 2x)5/2 − 1

2
(3− 2x)3/2 + C

= (3− 2x)3/2(
1

10
(3− 2x)− 1

2
) + C

= (3− 2x)3/2(
3

10
− x

5
− 5

10
) + C

= (3− 2x)3/2[−(
2

10
+

x

5
)] + C

= −1

5
(x + 1)(3− 2x)3/2

Again, you’ll notice I did a lot of algebraic simplification. If in method
1, and in method 2, I had stopped after a couple lines of simplification,
it would not have been at all apparent that these two methods ended
up with the same result. However, with the simplification, you can see
that in fact they did.

That should be enough verification that the integral is correct. In case
it is not, however:
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Verify:

d

dx
(−1

5
(x + 1)(3− 2x)3/2 + C) = −1

5
[(x + 1)

3

2
(3− 2x)1/2 · (−2)

+1 · (3− 2x)3/2]

= −1

5
[−3(x + 1)(3− 2x)1/2 + (3− 2x)3/2]

= −1

5
(3− 2x)1/2[−3(x + 1) + (3− 2x)1]

= −1

5
(3− 2x)1/2[−5x]

= x
√

(3− 2x)

6.

∫
x3 sin(x2) dx

This problem can be approached two different ways. I will describe
them both.

Method 1:
The integrand is a product, and the two pieces seem unrelated. I am
therefore going to use integration by parts.

I can’t antidifferentiate sin(x2), so my first thought is as follows:

Let

u = sin(x2) dv = x3 dx

du = 2x sin(x2) dx v =

∫
1

4
x4 dx

Using
∫

u dv = uv −
∫

v du, I get∫
x3 sin(x2) dx =

x4

4
sin(x2)− 2

4

∫
x5 sin(x2) dx.

The integral I am left with has a higher degree of x than the one I
started out with. This is not a good sign! While true, the above
attempt was not useful.

What then should I do? I still can’t antidifferentiate sin(x2). Why
not? Because sin(x2) is a composition. I need the piece that would
have come from differentiating the inside! In other words, looking at
my u and du in the above attempt, I need a multiple of x.
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In the original integral, do I have an x? You betcha! I have 3 –
x3 sin(x2) = x2 · x sin(x2)!

So ...

...Let

u = x2 dv = x sin(x2) dx

du = 2x dx v =

∫
x sin(x2) dx

To find v, we need a substitution.
Let w = x2. Then dw = 2x dx,

so v =
1

2

∫
sin(w) dw = −1

2
cos(x2)∫

x3 sin(x2) dx = −1

2
x2 cos(x2) +

∫
x cos(x2) dx.

The integral remaining is remarkably similar to the one I had to do
to go from dv to v. Doing a similar substitution, but this time in my
head, I find∫

x3 sin(x2) dx = −1

2
x2 cos(x2) +

1

2
sin(x2) + C

Verify:

d

dx

(
−1

2
x2 cos(x2) +

1

2
sin(x2) + C

)
= −1

2
[x2 · − sin(x2) · 2x + cos(x2) · 2x] + x cos(x2)

= x3 sin(x2)− x cos(x2) + x cos(x2)

= x3 sin(x2).

This first method involved me deciding right off that because the two
pieces of the product are unrelated, this must be an integration by
parts problem. I ended up having to do a substitution as well.

What if I had focused instead on the indisputable fact that sin(x2) is a
composition? In order for x3 sin(x2) to have come from differentiating
something, the chain rule would undoubtedly have to have been used.
So ... what if I had started with substitution? ...
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Method 2:
When we’re trying to antidifferentiate a composition, we let u be the
inside function. So

Let u = x2. Then du = 2x dx, and so
1

2
du = x dx.

How am I going to substitute these results into x3 sin(x2) dx? If we
don’t recognize that x3 = x2 · x, then another way is to solve for dx:

1

2
du = x dx =⇒ dx =

1

2x
du.

We then end up with∫
x3 sin(x2) dx =

∫
x3 sin(u)

1

2x
du

=
1

2

∫
x2 sin(u) du

=
1

2

∫
u sin(u) du

This is much simpler than what we started with, but now what? At
this point, we recognize that we have a product of two unrelated pieces,
and so we need to use integration by parts. I’ll replace the u in the
integration by parts formula with a U , to avoid confusion.

Let

U = u dv = sin(u) du
dU = du v = − cos(u)

Using
∫

U dv = Uv −
∫

v dU , we get

∫
x3 sin(x2) dx =

1

2

∫
u sin(u) du

=
1

2
[−u cos(u) +

∫
cos(u) du]

=
1

2
[−u cos(u) + sin(u)] + C

=
1

2
[−x2 cos(x2) + sin(x2)] + C

= −1

2
x2 cos(x2) +

1

2
sin(x2) + C
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So in the second method, I started with substitution, and then got to
a point where I had to use integration by parts. In other words, the
two methods are really the same, just approached in different orders,
depending on what strikes you first when you’re beginning the problem.

7.

∫
arcsin(x)√

1− x2
dx

When we look at this, we certainly see a composition: 1−x2 is ”plugged

into”
√

x. However, we also recognize
1√

1− x2
as being the derivative

of arcsin(x). If arcsin(x) weren’t sitting inside our integral as well, we
might just disregard that as coincidence. However, since arcsin(x) is
sitting right there, we decide it probably is not merely coincidence.

Let u = arcsin(x). Then du =
1√

1− x2
dx, which is sitting right in

our integral. Thus∫
arcsin(x)√

1− x2
dx =

∫
u du =

1

2
u2 + C =

1

2
(arcsin(x))2 + C.

Verify:

d

dx
(
1

2
(arcsin(x))2 + C) =

1

2
(2 arcsin(x)

1√
1− x2

) =
arcsin(x)√

1− x2
.

8.

∫
arctan(x) dx

How in the world to approach this? arctan(x) is a ”building block”
function – doesn’t that mean we either know how to integrate or we
don’t?

Furthermore, there’s no composition involved, so we couldn’t possibly
use substitution!

That leaves us with only integration by parts, although we’re at a loss
at how to approach it (unless we remember

∫
ln(x) dx from yesterday).

There’s only one (sensible) way to write arctan(x) as a product:

arctan(x) = arctan(x) · 1.
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I can’t use dv = arctan(x) dx, as then v =
∫

arctan(x) dx, which is the
problem I started with! So ...

Let
u = arctan(x) dv = dx
du = 1

1+x2 dx v = x

Using the by now very familiar
∫

u dv = uv −
∫

v du, I find∫
arctan(x) dx = x arctan(x)−

∫
x

1 + x2
dx.

This gives us another integral, but this one is a fairly straightforward
substitution problem. With u = 1 + x2 and du = 2x dx (so that
1

2
du = x dx), we find that∫

arctan(x) dx = x arctan(x)− 1

2
ln(1 + x2) + C

Verify:

d

dx
(x arctan(x)− 1

2
ln(1 + x2) + C) = [x · 1

1 + x2
+ 1 · arctan(x)]− 1

2
· 1

1 + x2
· 2x

=
x

1 + x2
+ arctan(x)− x

1 + x2

= arctan(x)
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