1. For each integral, explain why $\int_{a}^{b} f(x) dx$ is improper, and determine whether the integral converges or diverges.

(a)
$$\int_{1}^{\infty} 1 + \frac{1}{x^{4}} dx$$

(b)
$$\int_{1}^{\infty} \frac{1}{x} dx$$

(c)
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ where } p > 1$$

- 2. Think about the above results and the big picture of what's going on. It may be helpful to look at the graphs of each of the integrands.
 - (a) Is it *necessary* that f(x) converge to 0 as $x \to \infty$ in order for $\int_{a}^{\infty} f(x) dx$ to converge to a finite number?

Notice again the distinction between the function, or integrand, converging and the integral converging.

(b) If f(x) does converge to 0 as $x \to \infty$, must $\int_{a}^{b} f(x) dx$ automatically converge to a finite number? That is, is $f(x) \to 0$ a sufficient condition for $\int_{a}^{\infty} f(x) dx$ to converge to a finite number?

March 21, 2006

Sklensky