
3/22/06 Solutions to In-Class Work Calculus 2

Determine whether each of the following improper integrals converges or
diverges.

1.

∫ ∞

2

1√
x− 2

dx

Our first choice would be to just evaluate this improper integral directly
by first rewriting it as a limit and then using antidifferentiation, as we

did Tuesday. However, we don’t know how to antidifferentiate
1√

x− 2
.

On to plan B.

Plan B is to compare

∫ ∞

2

1√
x− 2

dx to an improper integral whose be-

havior we know. At this point, we only know the behavior of

∫ ∞

a

f(x) dx

if f(x) is of the form
1

xp
.

As long as a > 0,∫ ∞

a

1

xp
dx converges if p > 1

diverges if p ≤ 1

So we need to find some function
1

xp
to compare with

1√
x− 2

.

Especially in the beginning of your comparison experience, start with
the simplest comparisons. That is, don’t worry (at least at first) about
whether the thing your comparing with has an improper integral that
converges or diverges – you don’t yet have much of an intuition for this
anyway. Just find a true comparison and see whether it’s helpful to
you or not.

In my experience, the easiest way to find something to compare with
your fraction is to begin with the denominators. In this case, our
denominator is

√
x − 2. What is the easiest thing to compare

√
x − 2

to? x3, of course.
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√
x− 2 <

√
x

1√
x− 2

>
1√
x∫ ∞

2

1√
x− 2

dx ≥
∫ ∞

2

1√
x

dx

Since
1√
x

is of the form
1

xp
, with p < 1 and since we’re integrating from

2 to∞, the integral on the right diverges. Remember, that means that∫ ∞

2

1√
x

dx is infinite.

Since the integral on the left is bigger than the one on the right, which
is heading off to infinity, the integral on the left must also be heading
off to infinity as well. In other words,∫ ∞

2

√
x− 2 dx diverges.

Thus the comparison we found was helpful.

2.

∫ ∞

2

4

x3 + 2
dx

Again, our first choice would be to rewrite this as a limit and then use
the Fundamental Theorem of Calculus. However, as with the first prob-

lem, we don’t know how to antidifferentiate
4

x3 + 2
. Again, we switch

to simply determining convergence or divergence, using the comparison
theorem.

x3 + 2 > x3

0 <
4

x3 + 2
<

4

x3

0 ≤
∫ ∞

2

4

x3 + 2
dx ≤

∫ ∞

2

4

x3
dx
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The integral on the right is just 4

∫ ∞

2

1

x3
dx. Since

1

x3
is of the form

1

xp
, with p > 1 and since we’re integrating from 2 to∞, the integral on

the right converges. Remember, that means that it’s a finite number.

Thus we have that

0 ≤
∫ ∞

2

4

x3 + 2
dx ≤ a finite number,

so

∫ ∞

2

4

x3 + 2
dx is a finite number as well. In other words,∫ ∞

2

4

x3 + 2
dx converges.

Again, going with the simplest comparison proved useful.

Be aware: The easiest comparisons don’t always prove use-
ful. Suppose that instead of

∫∞
2

1
x3+2

dx, we’d been dealing

instead with
∫∞

2
1

x3−2
dx. That small change from addition

to subtraction makes this problem considerably more tricky.
See the end of this document for a discussion of what the
problem is, and one way to deal with it.

3.

∫ 1

0

2√
x + x2

dx

√
x + x2 >

√
x and x2

2√
x + x2

<
1√
x

and
1

x2∫ 1

0

2√
x + x2

dx ≤
∫ 1

0

1√
x

dx and

∫ 1

0

1

x2
dx

The second integral on the right diverges. Being less than or equal to
infinity is not a useful comparison. So that’s not helpful!

But the first integral converges, which is helpful!

Thus

∫ 1

0

2√
x + x2

dx converges as well, by comparison to

∫ 1

0

1√
x

dx.
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4.

∫ ∞

0

2√
x + x2

dx

This is improper at both ends, so we need to write it like:∫ ∞

0

2√
x + x2

dx =

∫ 1

0

2√
x + x2

dx +

∫ ∞

1

2√
x + x2

dx

We already know the first integral on the right converges – we just did
that.

How about the first one?
√

x + x2 >
√

x and x2

2√
x + x2

<
1√
x

and
1

x2∫ ∞

1

2√
x + x2

dx ≤
∫ ∞

1

1√
x

dx and

∫ ∞

1

1

x2
dx

In this case, the first integral on the right diverges, and so that’s a true
but useless comparison; but the second integral on the right converges,
and so the original converges.

Putting it all together, we’re adding up two finite pieces, and so the
whole thing also converges.

Dealing with slightly more difficult situations:

Suppose that instead of
∫

1
x3+2

dx, as we had in the second problem, we have∫
1

x3−2
dx. How does that change things?

Consider the obvious comparison:

x3 − 2 < x3

1

x3 − 2
>

1

x3∫ ∞

2

1

x3 − 2
dx ≥

∫ ∞

2

1

x3
dx
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The improper integral on the right converges – that is, it’s finite. So we have∫ ∞

2

1

x3 − 2
dx ≥ a finite number.

This is not a useful comparison. We can not deduce from this inequality

whether

∫ ∞

2

1

x3 − 2
dx is finite or whether in fact it’s infinite.

In this case, we have to try some other comparison. We still want the in-
equality to be obviously true. Up to now, we’ve just dropped the constant
that’s been added or subtracted. But in this problem that didn’t work.

Can I try replacing the constant with something useful? In other words, I
want to be able to say either

x3 − 2 < x3 − something useful or x3 − 2 > x3 − something useful.

In order to be useful, it must combine nicely with what I’ve already got – my
x3 term. Otherwise, I’m stuck with a worse mess in the denominator than
the x3 − 2 I’ve got now.

The only things that combine nicely with x3 are multiples of x3. So I want
to be able to say

x3 − 2 < x3 − ax3 or x3 − 2 > x3 − ax3.

Remember, eventually I’m going to be taking the reciprocal of these and
integrating them. But also remember, the comparison theorem only applies
to positive functions. That means that my comparison, x3 − ax3, must be
positive, which means that a must be less than 1.

So, can I think of something true to say about some fraction of x3 versus 2
on the interval [2,∞]?
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On [2,∞], x3 > 8, so
1

2
x3 > 4, which means that

1

2
x3 > 2

⇒ 2 <
1

2
x3 =

x3

2

⇒ x3 − 2 > x3 − x3

2

⇒ x3 − 2 >
x3

2

⇒ 1

x3 − 2
<

2

x3

⇒
∫ ∞

2

1

x3 − 2
dx ≤ 2

∫ ∞

2

1

x3
dx

The integral on the right is finite, since p = 3, which is greater than 1 (and
since we’re still looking at intervals that don’t include 0). That means that
the integral on the left is smaller than a finite number, but is positive. Hence∫ ∞

2

1

x3 − 2
dx converges.
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