Goal: When faced with an improper integral that we can't evaluate simply by taking limits and antidifferentiating, how do we determine its convergence and approximate it if possible?

1. Determine whether or not the improper integral converges when we cannot find an antiderivative.

Try to find a useful comparison-integral whose convergence or lack thereof we already know or can easily figure out.
2. If our improper integral does converge, is there a way to approximate the value of it?
(a) Replace the improper integral with a proper one. The error from dropping the tail will equal the tail. Bound that by using a larger comparison-integral.
(b) Use one of our approximation techniques (left sum, midpoint sum, etc) to estimate the new proper integral. This will also create an error; bound it using the formulas from Section 6.2.
(c) Bound the error by adding the two error bounds.

Consider the improper integral $I=\int_{1}^{\infty} \frac{5}{x^{3}+e^{x}} d x$

1. Determine whether I converges or diverges.
2. If I converges, find a definite integral which is within .005 of the improper integral. If I diverges, find a t so that $\int_{a}^{t} f(x) d x>500$.

Show that $\int_{1}^{\infty} \frac{x}{x^{5}+x^{2}+2} d x$ converges, and approximate its value accurate within 0.0001 .

