1. The nth Taylor polynomial for $f(x)$ based at $x=x_{0}$ is

$$
\begin{aligned}
P_{n}(x)= & f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2} \\
& +\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3} \cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

2. The idea behind Taylor polynomials approximating a function $f(x)$ is to focus on how f behaves at one point x_{0}. We match not only the y-values at x_{0}, but also the slopes (the first derivative), the concavity (the second derivative), and however many more derivatives we choose $-n$ is the number of derivatives we're choosing to match.
3. It seems that the higher n is, the better an approximation $P_{n}(x)$ gives.
4. We can approximate $\cos (x)$ near $x=0$ by

$$
\cos (x) \approx 1-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!
$$

and near $x=2 \pi$ by $\cos (x) \approx 1-(x-2 \pi)^{2} / 2!+(x-2 \pi)^{4} / 4!-(x-2 \pi)^{6} / 6!$

The first 6 derivatives of $\cos (x)$, evaluated at $x=0$:

$$
\begin{array}{ll}
f(x)=\cos (x) & f(0)=1 \\
f^{\prime}(x)=-\sin (x) & f^{\prime}(0)=0 \\
f^{\prime \prime}(x)=-\cos (x) & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=\sin (x) & f^{\prime \prime \prime}(0)=0 \\
f^{4}(x)=\cos (x) & f^{4}(0)=1 \\
f^{5}(x)=-\sin (x) & f^{5}(0)=0 \\
f^{6}(x)=-\cos (x) & f^{6}(0)=-1
\end{array}
$$

