Find $\int x^{2} \arctan (x) d x$.

Choose

$$
\begin{array}{ll}
u=x^{2} \arctan (x) & d v=d x \\
d u=2 x \arctan (x)+\frac{x^{2}}{1+x^{2}} d x & v=x
\end{array}
$$

Using $\int u d v=u v-\int v d u$, we get

$$
\begin{aligned}
\int x^{2} \arctan (x) d x & =x^{3} \arctan (x)-\int 2 x^{2} \arctan (x)+\frac{x^{3}}{1+x^{2}} d x \\
& =x^{3} \arctan (x)-2 \int x^{2} \arctan (x) d x-\int \frac{x^{3}}{1+x^{2}} d x
\end{aligned}
$$

Adding $2 \int x^{2} \arctan (x) d x$ to both sides, we get

$$
\begin{aligned}
3 \int x^{2} \arctan (x) d x & =x^{3} \arctan (x)-\int \frac{x^{3}}{1+x^{2}} d x \\
\int x^{2} \arctan (x) d x & =\frac{1}{3} x^{3} \arctan (x)-\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x
\end{aligned}
$$

Now all we need to do that last not-very-hard looking integral. If you know polynomial long-division-or are willing to learn it (it's not that hard)- this integral really isn't very hard to do:
First, it's easier to see what's going on if we rewrite both the numerator and the denominator of our fraction $\frac{x^{3}}{1+x^{2}}$ so that the terms are listed in order of descending degree: $\frac{x^{3}}{x^{2}+1}$.

$$
x ^ { 2 } + 1 \longdiv { x ^ { 3 } }
$$

How many times does $x^{2}+1$ go into x^{3} ? Well, I'd have to multiply the x^{2} term by x in order to get $x^{3}-$ unlike in other division, we don't worry about the lower order terms.
Thus we get $x^{2}+1 \quad \frac{x}{x^{3}}$

$$
-\underline{\left(x^{3}\right.} \frac{+x)}{-x}
$$

Now we ask ourselves how many times $x^{2}+1$ goes into x. Well, there isn't any non-negative power of x that we could multiply the x^{2} term by to get x, so we have a remainder of $-x$.

Thus

$$
\frac{x^{3}}{x^{2}+1}=x-\frac{x}{x^{2}+1} .
$$

We can check that this is true by multiplying both the left and right sides by the denominator $x^{2}+1$:

$$
x^{3}=x\left(x^{2}+1\right)-x \Longrightarrow x^{3}=x^{3}+x-x \Longrightarrow x^{3}=x^{3},
$$

which is clearly true.
Thus we have that

$$
\begin{aligned}
\int x^{2} \arctan (x) d x & =\frac{1}{3} x^{3} \arctan (x)-\frac{1}{3} \int x-\frac{x}{1+x^{2}} d x \\
& =\frac{1}{3} \arctan (x)-\frac{1}{3}\left(\frac{1}{2} x^{2}-\text { something easily done using } u \text {-substitution }\right)
\end{aligned}
$$

If we let $u=1+x^{2}$, then $d u=2 x d x$, so $\frac{1}{2} d u=x d x$, so

$$
\int \frac{x}{1+x^{2}} d x=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln |u|=\frac{1}{2} \ln \left(1+x^{2}\right) .
$$

Thus

$$
\int x^{2} \arctan (x) d x=\frac{1}{3} x^{3} \arctan (x)-\frac{1}{6} x^{2}+\frac{1}{6} \ln \left(1+x^{2}\right)+C .
$$

Of course, to finish the problem, you have to plug in the limits of integration, and then check using the midpoint method.
If you don't know how to polynomial long-division and are unwilling to learn it, the integral becomes a bit trickier.
Find $\int \frac{x^{3}}{1+x^{2}} d x$:

Rewrite this integral as

$$
\int \frac{x^{3}}{1+x^{2}} d x=\int x^{2} \frac{x}{1+x^{2}} d x
$$

Use integration by parts, with

$$
\begin{aligned}
& u=x^{2} \\
& d u=2 x d x
\end{aligned}
$$

$$
d v=\frac{x}{1+x^{2}} d x
$$

$$
v=\int \frac{x}{1+x^{2}} d x
$$

$$
w=1+x^{2} \Rightarrow d w=2 x d x \Rightarrow \frac{1}{2} d w=x d x
$$

we get

$$
v=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln (u)=\frac{1}{2} \ln \left(1+x^{2}\right)
$$

$$
\begin{aligned}
\int \frac{x^{3}}{1+x^{2}} d x & =x^{2}\left(\frac{1}{2} \ln \left(1+x^{2}\right)\right)-2 \cdot \frac{1}{2} \int x \ln \left(1+x^{2}\right) d x \\
& =\frac{1}{2} x^{2} \ln \left(1+x^{2}\right)-\int x \ln \left(1+x^{2}\right) d x
\end{aligned}
$$

In that last integral on the right, we have a composition here; let's let $u=1+x^{2}$, in which case $d u=2 x d x$, so $\frac{1}{2} d u=x d x$. Then our integral becomes

$$
\int x \ln \left(1+x^{2}\right) d x=\frac{1}{2} \int \ln (u) d u .
$$

Integrating $\ln (x)$, or in this case $\ln (u)$ is an integration by parts problem we've done before. In the interests of space and time, I will leap ahead to the result,

$$
\begin{aligned}
\int x \ln \left(1+x^{2}\right) d x & =\frac{1}{2}(u \ln (u)-u) \\
& =\frac{1}{2}\left(\left(1+x^{2}\right) \ln \left(1+x^{2}\right)-\left(1+x^{2}\right)\right) \\
& =\frac{1}{2}\left(1+x^{2}\right) \ln \left(1+x^{2}\right)-\frac{1}{2}\left(1+x^{2}\right) \\
& =\frac{1}{2} \ln \left(1+x^{2}\right)+\frac{1}{2} x^{2} \ln \left(1+x^{2}\right)-\frac{1}{2}-\frac{1}{2} x^{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int \frac{x^{3}}{1+x^{2}} d x & =\frac{1}{2} x^{2} \ln \left(1+x^{2}\right)-\frac{1}{2} \ln \left(1+x^{2}\right)-\frac{1}{2} x^{2} \ln \left(1+x^{2}\right)+\frac{1}{2}+\frac{1}{2} x^{2} \\
& =-\frac{1}{2} \ln \left(1+x^{2}\right)+\frac{1}{2}+\frac{1}{2} x^{2}
\end{aligned}
$$

and so

$$
\begin{aligned}
\int x^{2} \arctan (x) d x & =\frac{1}{3} x^{3} \arctan (x)-\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x \\
& =\frac{1}{3} x^{3} \arctan (x)-\frac{1}{3}\left(-\frac{1}{2} \ln \left(1+x^{2}\right)+\frac{1}{2}+\frac{1}{2} x^{2}\right) \\
& =\frac{1}{3} x^{3} \arctan (x)+\frac{1}{6} \ln \left(1+x^{2}\right)-\frac{1}{6}-\frac{1}{6} x^{2}+C
\end{aligned}
$$

If you compare the result we just got with the one I found (the easier way) way back toward the bottom of the second page, you'll see that they differ by a constant - but that's okay, because antiderivatives can differ by a constant.
As you can see, I think, the effort it takes to learn polynomial long-division (which is at least sometimes taught in high school algebra anyway) is much better spent, I think, than the effort it takes to do this integral the other way: once you know polynomial long-division, you can use it on other integrals as well, like the one we saw today in class $\int \frac{x^{2}}{1+x^{2}} d x$ (almost but not quite the same as the one we just did).

