Let $f(x)=e^{x}$.
Let $P_{n}(x)$ be the nth order Taylor polynomial for $f(x)$ at $x_{0}=0$.

1. (a) Find $P_{n}(x)$ for $n=0,1,2,3,4$. (Note that you can find all of these in one fell swoop if you start with the work for $P_{4}(x)$.)
(b) For $n=0,1,2,3,4$, check how well $P_{n}(x)$
approximates $f(x)$ by graphing $P_{n}(x)$ and $f(x)$ on the same set of axes. You can experiment with what domain you use, but I've found $x=-3$ to $x=3$ to be a good choice.
Remember: In Maple, we type in $\exp (x)$ rather than e^x.
2. Use $P_{3}(x)$ to find an approximation for $e^{1 / 2}$ and for e^{2}. Will these be larger or smaller than the actual value of $e^{1 / 2}$ and e^{2} ? From the graphs, do they look like good or bad approximations?

Let $f(x)=\sin (x)$ and let $P_{5}(x)$ be the 5th order Taylor polynomial for $f(x)$ at $x_{0}=\pi$.

1. Find $P_{5}(x)$
2. Verify your answer by graphing $P_{5}(x)$ and $f(x)$ on the same set of axes.
3. Use $P_{5}(x)$ to find an approximation for $\sin (4)$ and for $\sin (6)$. Will these be larger or smaller than the actual value of $\sin (6)$? How good approximations are they?
