Recall:

If the region bounded by the function $y=f(x)$ and $y=0$ for $a \leq x \leq b$ is rotated about the y-axis, then

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

In Class Work

Find the volume of each solid described below, using the shells.

1. The solid formed when the region bounded by $y=\sin \left(x^{2}\right)$ and the x-axis for $0 \leq x \leq \sqrt{\pi}$ is rotated about the y-axis
2. The solid formed when the region bounded by by the parabola $y=-x^{2}+8 x-15$ and the x-axis is rotated about the line $x=1$
3. The solid formed when the region bounded by $y=x, y=-x$, and $y=1$ is rotated about the x-axis.

Solutions:

1. The solid formed when the region bounded by $y=\sin \left(x^{2}\right)$ and the x-axis for $0 \leq x \leq \sqrt{\pi}$ is rotated about the y-axis

- Disks/washers isn't a good option
- Use shells!
- Shells around y-axis means $d x$
- radius $=x$, height $=\sin \left(x^{2}\right)$

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{\sqrt{\pi}} 2 \pi x \sin \left(x^{2}\right) d x \\
u & =x^{2}, d u=2 x d x \\
\text { Volume } & =\int_{x=0}^{x=\sqrt{\pi}} \pi \sin (u) d u=-\left.\pi \cos \left(x^{2}\right)\right|_{0} ^{\sqrt{\pi}} \\
& =-\pi(\cos (\pi)-\cos (0))=2 \pi \\
\text { (Sklensky) } & \text { In-Class Work }
\end{aligned}
$$

Solutions:

2. The solid formed when the region bounded by by the parabola $y=-x^{2}+8 x-15$ and the x-axis is rotated about the line $x=1$

- Again use Shells

- Shells about vertical axis means $d x$
- height $=f(x)=-x^{2}+8 x-15 ;$ radius $=x-1$.
- Intersection points:

$$
\begin{aligned}
-x^{2}+8 x-15=0 & \Rightarrow-(x-5)(x-3)=0 \\
& \Rightarrow x=3, x=5
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume } & =\int_{3}^{5} 2 \pi(x-1)\left(-x^{2}+8 x-15\right) d x \\
& =\ldots=2 \pi \int_{3}^{5}-x^{3}+9 x^{2}-23 x+15 d x \\
& =\left.2 \pi\left(-\frac{x^{4}}{4}+3 x^{3}-\frac{23 x^{2}}{2}+15 x\right)\right|_{3} ^{5}=\ldots=2 \pi \cdot 4=8 \pi
\end{aligned}
$$

Solutions

3. The solid formed when the region bounded by $y=x, y=-x$, and $y=1$ is rotated about the x-axis.

- Washers would require two integrals. Use shells.
- Shells about x-axis means $d y$
- height=right-left $=y-(-y)$; radius $=y$.

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{1} 2 \pi(y)(2 y) d y=2 \pi \int_{0}^{1} 2 y^{2} d y \\
& =\left.\frac{4 \pi}{3} y^{3}\right|_{0} ^{1}=\frac{4 \pi}{3}
\end{aligned}
$$

