For the vector-valued function $\overrightarrow{\mathbf{r}}(t)=<4 \cos (\pi t), 4 \sin (\pi t), t>$, find 1. the unit tangent vector $\overrightarrow{\mathbf{T}}(t)$ at $t=0$

$$
\begin{aligned}
\overrightarrow{\mathbf{T}}(t) & =\frac{\overrightarrow{\mathbf{r}}^{\prime}(t)}{\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\|} \\
& =\frac{<-4 \pi \sin (\pi t), 4 \pi \cos (\pi t), 1>}{\sqrt{16 \pi^{2}+1}} \\
\Longrightarrow \overrightarrow{\mathbf{T}}(0) & =\frac{<0,4 \pi, 1>}{\sqrt{16 \pi^{2}+1}}
\end{aligned}
$$

For the vector-valued function $\overrightarrow{\mathbf{r}}(t)=<4 \cos (\pi t), 4 \sin (\pi t), t>$, find 2. the principal unit normal vector $\overrightarrow{\mathbf{N}}(t)$ at $t=0$

$$
\begin{aligned}
\overrightarrow{\mathbf{N}}(t)=\frac{\overrightarrow{\mathbf{T}}^{\prime}(t)}{\| \overrightarrow{\mathbf{T}}}{ }^{\prime}(t) \|
\end{aligned}, \quad \overrightarrow{\mathbf{T}}(t)=\frac{<-4 \pi \sin (\pi t), 4 \pi \cos (\pi t), 1>}{\sqrt{16 \pi^{2}+1}}, \begin{aligned}
\Longrightarrow \overrightarrow{\mathbf{N}}(t) & =\frac{\frac{1}{\sqrt{16 \pi^{2}+1}}<-4 \pi^{2} \cos (\pi t),-4 \pi^{2} \sin (\pi t), 0>}{\frac{1}{\sqrt{16 \pi^{2}+1}}\left(\sqrt{(4 \pi)^{2}}\right)} \\
& =\frac{1}{4 \pi^{2}}<-4 \pi^{2} \cos (\pi t),-4 \pi^{2} \sin (\pi t), 0> \\
& =<-\cos (\pi t),-\sin (\pi t), 0>
\end{aligned}
$$

$$
\overrightarrow{\mathbf{N}}(0)=\langle-1,0,0\rangle
$$

3. Check to make sure $\overrightarrow{\mathbf{T}}(0)$ and $\overrightarrow{\mathbf{N}}(0)$ are orthogonal and have length 1 .

We found:

$$
\begin{gathered}
\overrightarrow{\mathbf{T}}(0)=\frac{<0,4 \pi, 1>}{\sqrt{16 \pi^{2}+1}} \quad \overrightarrow{\mathbf{N}}(0)=<-1,0,0> \\
\quad \frac{<0,4 \pi, 1>}{\sqrt{16 \pi^{2}+1}} \cdot<-1,0,0>=0+0+0=0 \\
\|\overrightarrow{\mathbf{T}}(0)\|=\frac{1}{\sqrt{16 \pi^{2}+1}}\left(\sqrt{0^{2}+(4 \pi)^{2}+1^{2}}\right)=1 \\
\|\overrightarrow{\mathbf{N}}(0)\|=\sqrt{(-1)^{2}+0^{2}+0^{2}}=1
\end{gathered}
$$

4. For the vector-valued function $\overrightarrow{\mathbf{r}}(t)=<4 \cos (\pi t), 4 \sin (\pi t), t>$, find the tangential and normal components of acceleration

Finding a_{T}, Method 1:
Using that $a_{T}=\frac{d^{2} s}{d t^{2}}=\frac{d}{d t}\left(\left\|\overrightarrow{\boldsymbol{r}^{\prime}}(t)\right\|\right)$:

$$
\begin{aligned}
a_{T} & =\frac{d}{d t}\left(\left\|\overrightarrow{\mathbf{r}^{\prime}}(t)\right\|\right) \\
& =\frac{d}{d t}(\|<-4 \pi \sin (\pi t), 4 \pi \cos (\pi t), 1>\|) \\
& =\frac{d}{d t} \sqrt{16 \pi^{2} \sin ^{2}(\pi t)+16 \pi^{2} \cos ^{2}(\pi t)+1} \\
& =\frac{d}{d t} \sqrt{16 \pi^{2}+1} \\
& =0
\end{aligned}
$$

4. For the vector-valued function $\overrightarrow{\mathbf{r}}(t)=<4 \cos (\pi t), 4 \sin (\pi t), t>$, find the tangential and normal components of acceleration

Finding a_{T}, Method 2:
Using that a_{T} is the component of $\overrightarrow{\mathbf{a}}(t)$ in the direction of $\overrightarrow{\mathbf{T}}(t)$:

$$
\begin{aligned}
a_{T} & =\operatorname{comp}_{\overrightarrow{\mathbf{T}}(t)} \overrightarrow{\mathbf{a}}(t)=\overrightarrow{\mathbf{a}}(t) \cdot \frac{\overrightarrow{\mathbf{T}}(t)}{\|\overrightarrow{\mathbf{T}}(t)\|}=\overrightarrow{\mathbf{a}}(t) \cdot \overrightarrow{\mathbf{T}}(t) \\
& =\overrightarrow{\mathbf{r}^{\prime \prime}}(t) \cdot \frac{\overrightarrow{\mathbf{r}^{\prime}}(t)}{\left\|\overrightarrow{\mathbf{r}^{\prime}}(t)\right\|} \\
& =\frac{1}{\sqrt{16 \pi^{2}+1}}<-16 \pi^{2} \cos (\pi t),-16 \pi^{2} \sin (\pi t), 0> \\
& \quad \cdot<-4 \pi \sin (\pi t), 4 \pi \cos (\pi t), 1> \\
& =\frac{1}{\sqrt{16 \pi^{2}+1}}\left(64 \pi^{3} \sin (\pi t) \cos (\pi t)-64 \pi^{3} \sin (\pi t) \cos (\pi t)+0\right) \\
& =0
\end{aligned}
$$

No matter which method we used to find a_{T}, we found that the component of the acceleration in the tangent vector's direction is 0 . Does this make sense?

Since we just found that for this vector-valued function the acceleration is orthogonal to the tangent vector (remember, we found using Method 2 that $\overrightarrow{\mathbf{a}}(t) \cdot \overrightarrow{\mathbf{T}}(t)=0$), we wouldn't expect the acceleration to have any component in the direction of the tangent vector. It's all in the direction of the normal vector!

This makes find a_{N} easier than usual. I will still go through the steps of 2 methods, to help illustrate the ideas.
4. For the vector-valued function $\overrightarrow{\mathbf{r}}(t)=<4 \cos (\pi t), 4 \sin (\pi t), t>$, find the tangential and normal components of acceleration

Finding a_{N}, Method 1:
Because $\overrightarrow{\mathbf{a}}(t)=a_{T} \overrightarrow{\mathbf{T}}(t)+a_{N} \overrightarrow{\mathbf{N}}(t)$ represents writing $\overrightarrow{\mathbf{a}}(t)$ as a sum of orthogonal vectors, we know that $\overrightarrow{\mathbf{a}}(t)$ represents the hypotenuse of a right triangle, while the other two vectors are the legs.
That is,

$$
\begin{aligned}
\|\overrightarrow{\mathbf{a}}(t)\|^{2} & =\left\|a_{T} \overrightarrow{\mathbf{T}}(t)\right\|^{2}+\left\|a_{N} \overrightarrow{\mathbf{N}}(t)\right\|^{2}=\left(a_{T}\right)^{2}\|\overrightarrow{\mathbf{T}}(t)\|^{2}+\left(a_{N}\right)^{2}\|\overrightarrow{\mathbf{N}}(t)\|^{2} \\
& =\left(a_{T}\right)^{2}+\left(a_{N}\right)^{2}
\end{aligned}
$$

Since $\overrightarrow{\mathbf{a}}(t)=<-16 \pi^{2} \cos (\pi t),-16 \pi^{2} \sin (\pi t), 0>,\|\overrightarrow{\mathbf{a}}(t)\|=16 \pi^{2}$.
We also know that $a_{T}=0$. Thus

$$
16 \pi^{2}=0^{2}+a_{N}^{2} \Longrightarrow a_{N}=16 \pi^{2}
$$

(Remember, $a_{N}>0$ because $a_{N}=\kappa\left(\frac{d s}{d t}\right)^{2}>0$. .)
4. For the vector-valued function $\overrightarrow{\mathbf{r}}(t)=<4 \cos (\pi t), 4 \sin (\pi t), t>$, find the tangential and normal components of acceleration

Finding a_{N}, Method 2:

$$
\overrightarrow{\mathbf{a}}(t)=a_{T} \overrightarrow{\mathbf{T}}(t)+a_{N} \overrightarrow{\mathbf{N}}(t) \quad \Longrightarrow \quad a_{N} \overrightarrow{\mathbf{N}}(t)=\overrightarrow{\mathbf{a}}(t)-a_{T} \overrightarrow{\mathbf{T}}(t)
$$

In (2) and in 4(a), we found that

$$
\begin{aligned}
\overrightarrow{\mathbf{N}}(t) & =<-\cos (\pi t),-\sin (\pi t), 0> \\
a_{T} & =0 \\
\overrightarrow{\mathbf{a}}(t) & \left.=<-16 \pi^{2} \cos (\pi t),-16 \pi^{2} \sin (\pi t), 0\right\rangle
\end{aligned}
$$

$$
a_{N}<-\cos (\pi t),-\sin (\pi t), 0>=16 \pi^{2}<-\cos (\pi t),-\sin (\pi t), 0>-\overrightarrow{\mathbf{0}}
$$

Equating x-components, y-components, and z-components
$-a_{N} \cos (\pi t)=-16 \pi^{2} \cos (\pi t),-a_{N} \sin (\pi t)=-16 \pi^{2} \sin (\pi t), 0=a_{N}(0)$.
Solving either of the first two eqns gives $a_{N}=16 \pi^{2}$,

