

The curve formed by intersecting the plane $y=0$ with the surface is a horizontal line $\frac{\partial f}{\partial x}$ will be zero at any point of the form $(x, 0)$.

The curve formed by intersecting the plane $x=0$ with the surface is also a horizontal line. $\frac{\partial f}{\partial y}$ will be zero at any point of the form $(0, y)$

The curve formed by intersecting the plane $y=x$ with the surface is a much more interesting curve.

This means that the directional derivatives in this direction at points along this line will vary considerably.

To find $\frac{\partial f}{\partial x}(a, b)$, we looked at

$$
\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
$$

To find $\frac{\partial f}{\partial y}(a, b)$, we looked at

$$
\frac{\partial f}{\partial y}=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}
$$

Find the following directional derivatives:

1. $f(x, y)=2 e^{4 x / y}-2 x,(a, b)=(2,-1)$, in the direction of $<1,3>$
2. $f(x, y, z)=x^{3} y z^{2}-4 x y,(a, b, c)=(1,-1,2)$, in the direction of $<2,0,-1>$.
