Supplement to Section 10.3

1. In each part, determine whether $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ make an acute angle, an obtuse angle, or are orthogonal.
(a) $\overrightarrow{\mathbf{u}}=7 \overrightarrow{\mathbf{i}}+3 \overrightarrow{\mathbf{j}}+5 \overrightarrow{\mathbf{k}}, \overrightarrow{\mathbf{v}}=-8 \overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}+2 \overrightarrow{\mathbf{k}}$.
(b) $\overrightarrow{\mathbf{u}}=\langle 4,1,6>, \overrightarrow{\mathbf{v}}=<-3,0,2>$
2. Does the triangle in 3 -space with vertices $(-1,2,3),(2,-2,0)$, and $(3,1,-4)$ have an obtuse angle? Justify your answer.
3. The figure below shows eight vectors that are equally spaced around a circle of radius 1. Find the dot product of $\overrightarrow{\mathbf{v}}_{0}$ with each of the other seven vectors.

4. Use vectors to show that $A(2,-1,1), B(3,2,-1)$ and $C(7,0,-2)$ are vertices of a right triangle. At which vertex is the right angle?
5. Explain why each of the following expressions makes no sense.
(a) $\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}})$
(b) $(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})+\overrightarrow{\mathbf{w}}$
(c) $\|\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}\|$
(d) $k \cdot(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})$
6. Let $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ be adjacent sides of a parallelogram. Use vectors to prove that the diagonals of the parallelogram are perpendicular if and only if the sides are equal in length.
7. Let $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ be adjacent sides of a parallelogram. Use vectors to prove that the parallelogram is a rectangle if and only if the diagonals are equal in length.
