Supplement to Section 10.4

1. Find two unit vectors that are orthogonal to the plane determined by the points $A(0,-2,1), B(1,-1,-2)$, and $C(-1,1,0)$. (Vectors orthogonal to a plane are also said to be normal to the plane.)
2. What can you say about the angle between non-zero vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ if $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\|\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}\|$?
3. Show that if $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are vectors in 3-space, then

$$
\|\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}\|^{2}=\|\overrightarrow{\mathbf{u}}\|^{2}\|\overrightarrow{\mathbf{v}}\|^{2}-(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})^{2} .
$$

4. Prove that if $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$, and $\overrightarrow{\mathbf{d}}$ lie in the same plane when positioned with a common initial point, then

$$
(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{d}})=0 .
$$

Supplement to Section 10.5
5. Determine whether the points $P_{1}(6,9,7), P_{2}(9,2,0)$, and $P_{3}(0,-5,-3)$ lie on the same line.
6. Find parametric equations for the line segment joining $P_{1}(5,-2,1)$ and $P_{2}(2,4,2)$.
7. Find the equations of the planes P_{1}, P_{2}, and P_{3} that are parallel to the coordinate planes and that pass through the point $(3,4,5)$.
8. Find an equation of the shaded plane in the figure below.

9. Determine whether the given planes are parallel, perpendicular, or neither.
(a) $P 1: 2 x-8 y-6 z-2=0, P_{2}:-x+4 y+3 z-5=0$
(b) $P 1: x-y+3 z-2=0, P_{2}: 2 x+z=1$
10. Find an equation of the plane that consists of all points equidistant from $(2,-1,1)$ and $(3,1,5)$.
11. Determine whether the line $L: x=4+2 t, y=-t, z=-1-4 t$ and plane P : $3 x+2 y+z-7=0$ are parallel, perpendicular, or neither.

Supplement to Section 11.1

12. Express the parametric equations as a single vector equation of the form $\overrightarrow{\mathbf{r}}(t)=$ $x(t) \overrightarrow{\mathbf{i}}+y(t) \overrightarrow{\mathbf{j}}$ or $\overrightarrow{\mathbf{r}}(t)=x(t) \overrightarrow{\mathbf{i}}+y(t) \overrightarrow{\mathbf{j}}+z(t) \overrightarrow{\mathbf{k}}$.
(a) $x=t^{2}+1, y=e^{-2 t}$.
(b) $x=t \sin (t), y=\ln (t), z=\cos ^{2}(t)$.
13. Find the parametric equations that correspond to the given vector equation.
(a) $\overrightarrow{\mathbf{r}}(t)=3 t^{2} \overrightarrow{\mathbf{i}}-2 \overrightarrow{\mathbf{j}}$
(b) $\overrightarrow{\mathbf{r}}(t)=t e^{-t \overrightarrow{\mathbf{i}}-5 t^{2} \overrightarrow{\mathbf{k}}}$
